PUID:

Instructions:

1. The point value of each exercise occurs to the left of the problem.
2. No books or notes or calculators are allowed.

Page	Points Possible	Points
2	24	
3	20	
4	18	
5	20	
6	16	
7	20	
8	20	
9	22	
10	200	
11	Total	20

1. (24 pts) Let $T: V \rightarrow V$ be a linear operator on an n-dimensional vector space over a field F. Let c_{1}, \ldots, c_{k} be distinct elements in F and let $p(x)=\left(x-c_{1}\right)^{r_{1}} \cdots\left(x-c_{k}\right)^{r_{k}}$ be the minimal polynomial of T. Let $W_{i}=\left\{v \in V \mid\left(T-c_{i} I\right)^{r_{i}}(v)=0\right\}$.
(a) Describe linear operators $E_{i}: V \rightarrow V, i=1, \ldots, k$, such that $E_{i}(V)=W_{i}, \quad E_{i}^{2}=E_{i}$ for each $i, \quad E_{i} E_{j}=0$ if $i \neq j$, and $E_{1}+\cdots+E_{k}=I$ is the identity operator on V.
(b) Describe how to obtain linear operators D and N such that $T=D+N$, where D is diagonalizable, N is nilpotent and D and N are polynomials in T.
(c) If $T=D^{\prime}+N^{\prime}$, where D^{\prime} is diagonalizable and N^{\prime} is nilpotent and $D^{\prime} N^{\prime}=N^{\prime} D^{\prime}$, prove that $D=D^{\prime}$ and $N=N^{\prime}$.
2. (20 pts) Let notation be as in the previous problem and let $f(x)=\left(x-c_{1}\right)^{d_{1}} \cdots\left(x-c_{k}\right)^{d_{k}}$ be the characteristic polynomial for T. Thus $n=d_{1}+\cdots+d_{k}$ and $1 \leq r_{i} \leq d_{i}$ for each i.
(a) Describe the possible Jordan forms for T.
(b) What are necessary and sufficient conditions in order that $\operatorname{rank} T=n$?
(c) If $\operatorname{rank} T<n$, prove or disprove that $\operatorname{rank} T-\operatorname{rank} T^{2} \geq \operatorname{rank} T^{2}-\operatorname{rank} T^{3}$.
3. (18 pts) Let notation be as in the previous problem.
(a) If $r_{i}+1=d_{i}$ for each $i \in\{1, \ldots, k\}$, how many different Jordan forms are possible?
(b) If $r_{i}+2=d_{i}$ for each $i \in\{1, \ldots, k\}$, how many different Jordan forms are possible?
(c) If $r_{i}+3=d_{i}$ for each $i \in\{1, \ldots, k\}$, how many different Jordan forms are possible?
4. Let M be a module over the integral domain D. A submodule N of M is pure in M if the following holds: given $y \in N$ and $a \in D$ such that there exists $x \in M$ with $a x=y$, then there exists $z \in N$ with $a z=y$.
(a) (10 pts) Let N be a submodule of M and for $x \in M$, let $\bar{x}=x+N$ denote the coset representing the image of x in the quotient module M / N. If N is a pure submodule of M, and ann $\bar{x}=\{a \in D \mid a \bar{x}=0\}$ is the principal ideal (d) of D, prove that there exists $x^{\prime} \in M$ such that $x+N=x^{\prime}+N$ and ann $x^{\prime}=\left\{a \in D \mid a x^{\prime}=0\right\}$ is the principal ideal (d).
(b) (10 pts) If $M=\langle\alpha\rangle$ is a cyclic \mathbb{Z}-module of order 12 , list the submodules of M and indicate which of the submodules of M are pure in M.
5. (16 pts) Let M be a finitely generated module over the polynomial ring $F[x]$, where F is a field, and let N be a pure submodule of M. Prove that there exists a submodule L of M such that $N+L=M$ and $N \cap L=0$.
6. (20 pts) Let $T: V \rightarrow V$ be a linear operator on a finite-dimensional vector space V and let $R=T(V)$ denote the range of T.
(a) Prove that R has a complementary T-invariant subspace if and only if R is independent of the null space N of T, i.e., $R \cap N=0$.
(b) If R and N are independent, prove that N is the unique T-invariant subspace of V that is complementary to R.
7. (20 pts) Let p be a prime integer and let $F=\mathbb{Z} / p \mathbb{Z}$ be the field with p elements. Let V be a vector space over F and $T: V \rightarrow V$ a linear operator. Assume that T has characteristic polynomial x^{4} and minimal polynomial x^{3}.
(a) Express V as a direct sum of cyclic $F[x]$-modules.
(b) How many cyclic 3-dimensional T-invariant subspaces does V have?
(c) How many cyclic 3-dimensional T-invariant subspaces of V are direct summands of V ?
(d) How many cyclic 2-dimensional T-invariant subspaces does V have?
(e) How many cyclic 2-dimensional T-invariant subspaces of V are direct summands of V ?
(f) How many 1-dimensional T-invariant subspaces does V have?
(g) How many 1-dimensional T-invariant subspaces of V are direct summands of V ?
8. (20 pts) Let V be a finite dimensional inner product space over \mathbb{C} and let $T: V \rightarrow V$ be a linear operator.
(a) (2 pts) Define the adjoint T^{*} of T.
(b) (6 pts) If $T=T^{*}$, prove that every characteristic value of T is a real number.
(c) (6 pts) Assume that $T=T^{*}$ and that c and d are distinct characteristic values of T. If α and β in V are such that $T \alpha=c \alpha$ and $T \beta=d \beta$, prove that α and β are orthogonal.
(d) (6 pts) State true or false and justify: If $A \in \mathbb{R}^{5 \times 5}$ is symmetric, then A is diagonalizable.
9. (20 pts) Consider the abelian group $V=\mathbb{Z} /\left(5^{4}\right) \oplus \mathbb{Z} /\left(5^{3}\right) \oplus \mathbb{Z}$.
(a) Write down a relation matrix for V as a \mathbb{Z}-module.
(b) Let W be the cyclic subgroup of V generated by the image of the element $\left(5^{2}, 5,5\right)$ in $\mathbb{Z} /\left(5^{4}\right) \oplus \mathbb{Z} /\left(5^{3}\right) \oplus \mathbb{Z}$. Write down a relation matrix for W.
(c) Write down a relation matrix for the quotient module V / W.
(d) What is the cardinality of the quotient module V / W ?
10. (12 pts) Prove or disprove: if V is a vector space over a field F and $T: V \rightarrow V$ is a linear operator such that every subspace of V is invariant under T, then T is a scalar multiple of the identity operator.
11. Let F be a field and let $g(x) \in F[x]$ be a monic polynomial.
(a) (5 pts) Describe the $F[x]$-submodules of $V=F[x] /(g(x))$.
(b) (5 pts) If $g(x)=x^{3}(x-1)$, diagram the lattice of $F[x]$-submodules of $V=F[x] /(g(x))$.
