Instructions:

1. The point value of each exercise occurs to the left of the problem.
2. No books or notes or calculators are allowed.

Page	Points Possible	Points
2	20	
3	20	
4	20	
5	20	
6	18	
7	20	
8	20	
9	16	
10	16	
11	15	
12	15	
Total	200	

1. $(20 \mathrm{pts})$ Classify up to similarity all matrices $A \in \mathbb{Q}^{3 \times 3}$ such that $A^{3}=I$.
2. (20 pts) Let V be a finite dimensional inner product space over \mathbb{C} and let $T: V \rightarrow V$ be a linear operator.
(a) (2 pts) Define the adjoint T^{*} of T.
(b) (6 pts) If W is a T-invariant subspace of V, prove or disprove that the orthogonal complement W^{\perp} is T^{*}-invariant.
(c) (6 pts) If $T=T^{*}$, prove that every characteristic value of T is a real number.
(d) (6 pts) Assume that $T=T^{*}$ and that c and d are distinct characteristic values of T. If α and β in V are such that $T \alpha=c \alpha$ and $T \beta=d \beta$, prove that α and β are orthogonal.
3. (12 pts) Let $T: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ be a linear operator and let $g(x)$ be a polynomial in $\mathbb{C}[x]$. If c is a characteristic value for $g(T)$, must there exist a characteristic value a for T such that $g(a)=c$? Explain.
4. (8 pts) State true or false and justify your answer: If V is a finite-dimensional vector space and W_{1} and W_{2} are subspaces of V such that $V=W_{1} \oplus W_{2}$, then for any subspace W of V we have $W=\left(W \cap W_{1}\right) \oplus\left(W \cap W_{2}\right)$.
5. Let $A \in \mathbb{C}^{3 \times 3}$ be a diagonal matrix with main diagonal entries $1,2,3$. Define $T_{A}: \mathbb{C}^{3 \times 3} \rightarrow \mathbb{C}^{3 \times 3}$ by $T_{A}(B)=A B-B A$.
(a) (4 pts) What is the dimension of the null space of T_{A} ?
(b) (4 pts) What is the dimension of the range of T_{A} ?
(c) (4 pts) What are the characteristic values of T_{A} ?
(d) (4 pts) What is the minimal polynomial of T_{A} ?
(e) (4 pts) Is T_{A} diagonalizable? Explain.
6. (18 pts) Let D be a principal ideal domain and let V and W denote free D-modules of rank 3 and 2, respectively. Assume that $\varphi: V \rightarrow W$ is a D-module homomorphism, and that \mathbf{B} $=\left\{v_{1}, v_{2}, v_{3}\right\}$ is an ordered basis of V and $\mathbf{B}^{\prime}=\left\{w_{1}, w_{2}\right\}$ is an ordered basis of W.
(a) (4 pts) Define the coordinate vector of $v \in V$ with respect to the basis \mathbf{B}.
(b) (4 pts) Describe how to obtain a matrix $A \in D^{2 \times 3}$ so that left multiplication by A on D^{3} represents $\varphi: V \rightarrow W$ with respect to \mathbf{B} and \mathbf{B}^{\prime}.
(c) (5 pts) How does the matrix A change if we change the basis \mathbf{B} by replacing v_{1} by $v_{1}+a v_{2}$ for some $a \in D$?
(d) $(5 \mathrm{pts})$ How does the matrix A change if we change the basis \mathbf{B}^{\prime} by replacing w_{1} by $w_{1}+a w_{2}$ for some $a \in D$?
7. (20 pts) Let V be a 4 -dimensional vector space over \mathbb{C}, and let $L(V, V)$ be the vector space of linear operators on V. Let \mathcal{F} be a subspace of $L(V, V)$ such that for every $T, U \in \mathcal{F}$, we have $T U=U T$.
(a) (8 pts) Demonstrate with an example that it is possible for there to exist in \mathcal{F} five elements that are linearly independent over \mathbb{C}.
(b) (12 pts) If there exists $T \in \mathcal{F}$ having at least two distinct characteristic values, prove or disprove that $\operatorname{dim} \mathcal{F} \leq 4$.
8. (20 pts) Let V be a finite-dimensional vector space over a field F and let $T: V \rightarrow V$ be a linear operator. Give to V the structure of a module over the polynomial ring $F[x]$ by defining $x \alpha=T(\alpha)$ for each $\alpha \in V$.
(a) If $\left\{v_{1}, \cdots, v_{n}\right\}$ are generators for V as an $F[x]$-module, what does it mean for a matrix $A \in F[x]^{m \times n}$ to be a relation matrix for V with respect to $\left\{v_{1}, \ldots, v_{n}\right\}$?
(b) If $F=\mathbb{C}$ and $A=\left[\begin{array}{ccc}x^{2}(x-1)^{2} & 0 & 0 \\ 0 & x(x-1)(x-2) & 0 \\ 0 & 0 & x(x-2)^{2}\end{array}\right]$ is a relation matrix for V with respect to $\left\{v_{1}, v_{2}, v_{3}\right\}$, list the invariant factors of V.
(c) With assumptions as in part (b), list the elementary divisors of V and describe the direct sum decomposition of V given by the primary decomposition theorem.
(d) With assumptions as in part (b), write the Jordan form of the operator T.
9. (16 pts) Let V be a finite-dimensional vector space over a field F and let $T: V \rightarrow V$ be a linear operator. Give to V the structure of a module over the polynomial ring $F[x]$ by defining $x \alpha=T(\alpha)$ for each $\alpha \in V$.
(a) Outline a proof that $V=\frac{F[x]}{\left(d_{1}\right)} \oplus \cdots \oplus \frac{F[x]}{\left(d_{r}\right)}$, where d_{1}, \ldots, d_{r} are monic polynomials such that d_{k} divides d_{k-1} for $2 \leq k \leq r$.
(b) Assume the field F is infinite. In terms of the expression for V as a direct sum of cyclic $F[x]$-modules as in part (a), what are necessary and sufficient conditions in order that V have only finitely many T-invariant subspaces? Explain.
10. (16 pts) Let M be a module over the integral domain D. A submodule N of M is pure in M if the following holds: whenever $y \in N$ and $a \in D$ are such that there exists $x \in M$ with $a x=y$, then there exists $z \in N$ with $a z=y$.
(a) (8 pts) For N a submodule and $x \in M$, let $\bar{x}=x+N$ denote the coset representing the image of x in the quotient module M / N. If N is pure in M, and ann $\bar{x}=\{a \in D \mid a \bar{x}=0\}$ is the principal ideal (d) of D, prove that there exists $x^{\prime} \in M$ such that $x+N=x^{\prime}+N$ and ann $x^{\prime}=\left\{a \in D \mid a x^{\prime}=0\right\}$ is the principal ideal (d).
(b) (8 pts) Let $M=\langle\alpha\rangle$ be a cyclic \mathbb{Z}-module of order 12 . List the submodules of M and indicate which of these submodules are pure in M.
11. (15 pts) Let F be a field and let M be a finitely generated module over the polynomial ring $F[x]$. Let N be a submodule of M. If N is pure in M, prove that there exists a submodule L of M such that $N+L=M$ and $N \cap L=0$.
12. (15 pts) Let $A \in \mathbb{C}^{4 \times 4}$ be a diagonal matrix with exactly three distinct entries on its main diagonal.
(a) (5 pts) What is the dimension of the vector space over \mathbb{C} of matrices that are polynomials in A ?
(b) (5 pts) What is the dimension of the vector space over \mathbb{C} of matrices $B \in \mathbb{C}^{4 \times 4}$ such that $A B=B A$?
(c) (5 pts) If $B \in \mathbb{C}^{4 \times 4}$ is a diagonal matrix with exactly three distinct entries on its main diagonal, is B similar to a polynomial in A ? Justify your answer.
