August 2016

PUID: _		

Instructions:

- 1. The point value of each exercise occurs to the left of the problem.
- 2. Write your answer in the box, if one is provided.
- 3. No books or notes or calculators are allowed.

Page	Points Possible	Points	
2	24		
3	20		
4	16		
5	16		
6	24		
7	20		
8	20		
9	20		
10	20		
11	20		
Total	200		

- 1. (24 pts) Let F be a finite field with p elements, let V be a 3-dimensional vector space over F and let $T: V \to V$ be a linear operator that has minimal polynomial x^2 .
 - (a) (6 pts) How many 1-dimensional T-invariant subspaces does V have? Explain.

(b) (6 pts) How many 1-dimensional T-invariant subspaces W of V are direct summands of V, i.e., are such that $V = W \oplus W'$, where W' is a T-invariant subspace of V?

(c) (6 pts) How many 2-dimensional T-invariant subspaces does V have? Explain.

(d) (6 pts) How many 2-dimensional T-invariant subspaces are direct summands of V?

2. (10 pts) Let V be a vector space over an infinite field F. Prove that V is not the union of finitely many proper subspaces.

3. (10 pts) Let V be a finite-dimensional vector space over an infinite field F and let $\alpha_1, \ldots, \alpha_m$ be finitely many nonzero vectors in V. Prove that there exists a linear functional f on V such that $f(\alpha_i) \neq 0$ for each i with $1 \leq i \leq m$.

Math 55400

- **4.** (16 pts) Let M be a module over the integral domain D. A submodule N of M is pure in M if the following holds: whenever $y \in N$ and $a \in D$ are such that there exists $x \in M$ with ax = y, then there exists $z \in N$ with az = y.
 - (a) (8 pts) If N is a direct summand of M, prove that N is pure in M.

(b) (8 pts) For $x \in M$, let $\overline{x} = x + N$ denote the coset representing the image of x in the quotient module M/N. If N is pure in M, and ann $\overline{x} = \{a \in D \mid a\overline{x} = 0\}$ is the principal ideal (d) of D, prove that there exists $x' \in M$ such that x + N = x' + N and ann $x' = \{a \in D \mid ax' = 0\}$ is the principal ideal (d).

5. (16 pts) Let F be a field and let M be a finitely generated module over the polynomial ring F[x]. Let N be a submodule of M that is pure in M. Prove that there exists a submodule L of M such that N+L=M and $N\cap L=0$.

- **6.** (12 pts) Let F be a field.
 - (a) What is the dimension of the vector space of all 3-linear functions $D: F^{3\times 3} \to F$? Explain.
 - (b) What is the dimension of the vector space of all 3-linear alternating functions $D: F^{3\times 3} \to F$? Explain.

7. (6 pts) If t_0, t_1, \ldots, t_n are n+1 distinct elements of a field F and c_0, c_1, \ldots, c_n are elements of F, write down a polynomial $g(x) \in F[x]$ of degree $\leq n$ such that $g(t_i) = c_i$ for each $i \in \{0, 1, \ldots, n\}$.

8. (6 pts) Let \mathbb{Q} denote the field of rational numbers. Give an example of a linear operator $T:\mathbb{Q}^3\to\mathbb{Q}^3$ having the property that the only T-invariant subspaces are the whole space and the zero subspace. Explain why your example has this property.

- 9. (20 pts) Let $A \in \mathbb{C}^{5 \times 5}$ be a diagonal matrix with exactly four distinct entries on its main diagonal.
 - (a) (6 pts) What is the dimension of the vector space over $\mathbb C$ of matrices that are polynomials in A?

(b) (6 pts) What is the dimension of the vector space over $\mathbb C$ of matrices $B\in\mathbb C^{5\times 5}$ such that AB=BA?

(c) (8 pts) If $B \in \mathbb{C}^{5\times 5}$ is a diagonal matrix with exactly four distinct entries on its main diagonal, is B similar to a polynomial in A? Justify your answer.

- 10. (20 pts) Let V be an abelian group generated by elements a, b, c. Assume that 2a = 4b, 2b = 4c, 2c = 4a, and that these three relations generate all the relations on a, b, c.
 - (a) (4 pts) Write down a relation matrix for V.
 - (b) (4 pts) Find generators x, y, z for V such that $V = \langle x \rangle \oplus \langle y \rangle \oplus \langle z \rangle$ is the direct sum of cyclic subgroups generated by x, y, z.

(c) (4 pts) Express your generators x, y, z in terms of a, b, c.

(d) (8 pts) List the orders of elements in V and the number of elements of each order.

- 11. (20 pts) Let V be a finite-dimensional vector space over an infinite field F and let T: $V \to V$ be a linear operator. Give to V the structure of a module over the polynomial ring F[x] by defining $x\alpha = T(\alpha)$ for each $\alpha \in V$.
 - (a) Outline a proof that V is a direct sum of cyclic F[x]-modules.

(b) In terms of the expression for V as a direct sum of cyclic F[x]-modules, what are necessary and sufficient conditions in order that V have only finitely many T-invariant subspaces? Explain.

- 12. (20 pts) Let V be a finite dimensional inner product space over $\mathbb C$ and let $T:V\to V$ be a linear operator.
 - (a) Define the adjoint T^* of T.
 - (b) If $T = T^*$, prove that every characteristic value of T is a real number.

(c) Assume that $T=T^*$ and that c and d are distinct characteristic values of T. If α and β in V are such that $T\alpha=c\alpha$ and $T\beta=d\beta$, prove that α and β are orthogonal.

(d) If W is a T-invariant subspace of V, prove or disprove that the orthogonal complement W^{\perp} must be T^* -invariant.

- 13. (20 pts) Let $A \in \mathbb{C}^{3\times 3}$ be a diagonal matrix with main diagonal entries 1, 2, 3. Define $T_A: \mathbb{C}^{3\times 3} \to \mathbb{C}^{3\times 3}$ by $T_A(B) = AB BA$.
 - (a) What is the dimension of the null space of T_A ?

(b) What is the dimension of the range of T_A ?

(c) What are the characteristic values of T_A ?

(d) What is the minimal polynomial of T_A ?

(e) Is T_A diagonalizable? Explain.