NAME: \qquad

T.T.Moh

- This is a two hour test.
- Write your answers on the test paper!
- For decimal approximations, it is enough to give 2 decimal places.
- Show your work such that your reasoning can be followed.
- There are 10 pages, 10 questions, 20 points each and 200 points on this test.

1. A ring is said to be noetherian if every ideal is finitely generated. Show that a ring is noetherian iff any submodule of any finitely generated module is finitely generated.
2. Show that all integer valued polynomials at integers (i.e., $f(n) \in Z$ for all $n \in Z$) in $Q[x]$ form a vector space and find a basis for it.
3. Let A be the following matrix,

$$
A=\left[\begin{array}{lll}
1, & 2, & 3 \\
4, & 5, & 6 \\
7, & 8, & 9
\end{array}\right]
$$

Let R^{3}, the real space, be considered as a $R[x]$ module defined by

$$
f(x) \cdot v=f(A) \cdot v
$$

What are the torsion factors and the betti numbers?
4. Compute the elementary factors to decide if the following two matrices are similar.

$$
\left[\begin{array}{ccc}
2, & -2, & 14 \\
0, & 3, & -7 \\
0, & 0, & 2
\end{array}\right], \quad\left[\begin{array}{ccc}
2, & 2, & 1 \\
0, & 2, & -1 \\
0, & 0, & 3,
\end{array}\right]
$$

page 5
5. Find the Jördan canonical form of the following matrix

$$
A=\left[\begin{array}{lll}
1, & 1, & 1 \\
0, & 0, & 0 \\
0, & 0, & 0
\end{array}\right]
$$

6. Show that a square idempotent matrix A (i.e., $A^{2}=A$) can be diagonalized.
7. (Reflections) Let us consider the reflections of R^{3}. A reflection is a 3×3 matrix R such that (1) $\operatorname{det}(R)=-1$. (2) it fixes the length of vectors. Show that -1 must be an eigenvalue of a reflection.
8. Check the Cayley-Hamilton Theorem of the following matrix A by computation,

$$
A=\left[\begin{array}{lll}
1, & 2, & 0 \\
2, & 1, & 1 \\
0, & 1, & 0
\end{array}\right]
$$

page 9

9. Let V be a complete inner product space. Show that $V \neq U \oplus U^{\perp}$ if U is not closed.
10. Decide if the following function has a local minima at the origin;

$$
f(x, y, z)=3 x^{2}+4 x y+2 x z+2 y^{2}+3 y z+2 z^{2}
$$

