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Instructions:
1. The point value of each exercise occurs to the left of the problem.

2. No books or notes or calculators are allowed.
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1. (20 pts) Let p be a prime integer and let F' = Z/pZ be the field with p elements. Let V be
a vector space over F' and T : V' — V a linear operator. Assume that 7T has characteristic
polynomial 2% and minimal polynomial z2.

(a) Express V as a direct sum of cyclic F[z]-modules.

(b) How many non-cyclic 2-dimensional T-invariant subspaces does V' have?

(c) How many 2-dimensional T-invariant subspaces of V' are direct summands of V7

(d) How many 1-dimensional T-invariant subspaces does V have?

(e) How many 1-dimensional T-invariant subspaces of V' are not direct summands of V'?
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2. Let V be a finite-dimensional vector space over a field F', let T': V' — V be a linear operator,
and let p(z) € F[z] be the minimal polynomial of 7. Assume that p(z) = p}*---p*, where
the p; € F[x] are distinct monic irreducible polynomials, ¢ = 1,--- ,k, and the r; are positive
integers. Let W; = {a € V | p;(T)" () = 0}.

(a) (10 pts) Describe how to obtain linear operators F; : V. — V, ¢ = 1,... k, such that
E(V)=W;, EZ2 = I for each i, E;FE; =0ifi # j, and Fy +---+ Ej, = [ is the identity
operator on V.

(b) (10 pts) If p(z) is a product of linear polynomials, describe how to obtain a diagonalizable
operator D and a nilpotent operator N such that T'= D + N, where D and N are both
polynomials in 7.
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3. (20 pts) Let V be a finite-dimensional vector space over an infinite field F' and let T': V — V
be a linear operator. Give to V the structure of a module over the polynomial ring F[z] by
defining zao = T'(«v) for each o € V.

(a) Outline a proof that V' is a direct sum of cyclic F[z]-modules.

(b) In terms of an expression for V as a direct sum of cyclic F[z]-modules, what are necessary
and sufficient conditions in order that V have only finitely many 7T-invariant subspaces?
Explain.
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4. (20 pts) Let V be a finite-dimensional vector space over a field F' and let Wy, Wy and W3 be
nonzero subspaces of V.

(a) If WiNW4 = 0, prove or disprove that every vector 8 in W7 +W5 has a unique representation
as 0 = a1 + as, where a; € Wi and as € Ws.

(b) If W; N W; = 0 for each i # j with 4, j € {1,2,3}, prove or disprove that every vector 3 in
W1 4+ Wy 4+ W3 has a unique representation as 8 = oy + ao + ag, where o; € W, 1 <4 < 3.
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5. (20 pts) Let D be a principal ideal domain, let n be a positive integer, and let D™ denote a
free D-module of rank n.

(a) If L is a submodule of D™ prove that L is a free D-module of rank m < n.

(b) If L is a proper submodule of D™ prove or disprove that rank L < n.
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6. (15 pts) Let M be a module over an integral domain D. A submodule N of M is pure in M if
for every y € N and a € D the following condition holds: if ax = y for some x € M, then there
exists z € N with az = y.

(a) If M = (m) is a cyclic Z-module of order 24, list all the pure submodules of M.

(b) For a submodule N of M and x € M, let T = x + N denote the coset representing the
image of z in M/N. Prove that annZ :={a € D | ax =0} D annz :={a € D | ax = 0}.

(c) If N is pure in M, and ann T is the principal ideal (d) of D, prove that there exists 2’ € M
such that z + N = 2’ + N and annz2’ = (d).
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7. (13 pts) Let M be a finitely generated module over the polynomial ring F'[x|, where F' is a field,
and let N be a pure submodule of M. Prove that there exists a submodule L of M such that
N+L=Mand NNL=0.
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8. (18 pts) Let T': V' — V be a linear operator on a finite-dimensional vector space V and let
R =T(V) denote the range of T

(a) Prove that R has a complementary T-invariant subspace if and only if R is independent of
the null space N of T, i.e., RN N = 0.

(b) If R and N are independent, prove that N is the unique T-invariant subspace of V' that is
complementary to R.
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9. (20 pts) Let A and B be in Q"*" and let I € Q"*" denote the identity matrix.

(a) State true or false and justify: if A and B are similar over an extension field F' of Q, then
A and B are similar over Q.

(b) Let M and N be n x n matrices over the polynomial ring Q[z]. Define “M and N are
equivalent over Q[z].”

(c) State true or false and justify: If det(xl — A) = det(zI — B), then I — A and zI — B are
equivalent over Qlz].

(d) State true or false and justify: If 2 — A and zI — B are equivalent over Q[z], then A and
B are similar over Q.

10
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10. (18 pts) Let A € C*** be a diagonal matrix with exactly three distinct entries on its main
diagonal.

(a) What is the dimension of the vector space over C of matrices that are polynomials in A?

(b) What is the dimension of the vector space over C of matrices B € C*** such that AB =
BA?

(c) If B € C*** is a diagonal matrix with exactly three distinct entries on its main diagonal,
is B similar to a polynomial in A? Justify your answer.

11
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11. (8 pts) Let V' be an abelian group with generators (v1,vs,v3) that has the matrix [j 102 (8]]

as a relation matrix. Express V as a direct sum of cyclic groups.

4 0 8
12. (8 pts) Let V be an abelian group with generators (vi, vz, v3) that has the matrix |4 12 0
2 20

as a relation matrix. Express V' as a direct sum of cyclic groups.

12



