PUID:

Instructions:

1. The point value of each exercise occurs to the left of the problem.
2. No books or notes or calculators are allowed.

Page	Points Possible	Points
2	20	
3	20	
4	20	
5	20	
6	20	
7	15	
8	13	
9	18	
10	20	
11	18	
12	16	
Total	200	

1. (20 pts) Let p be a prime integer and let $F=\mathbb{Z} / p \mathbb{Z}$ be the field with p elements. Let V be a vector space over F and $T: V \rightarrow V$ a linear operator. Assume that T has characteristic polynomial x^{3} and minimal polynomial x^{2}.
(a) Express V as a direct sum of cyclic $F[x]$-modules.
(b) How many non-cyclic 2-dimensional T-invariant subspaces does V have?
(c) How many 2-dimensional T-invariant subspaces of V are direct summands of V ?
(d) How many 1-dimensional T-invariant subspaces does V have?
(e) How many 1-dimensional T-invariant subspaces of V are not direct summands of V ?
2. Let V be a finite-dimensional vector space over a field F, let $T: V \rightarrow V$ be a linear operator, and let $p(x) \in F[x]$ be the minimal polynomial of T. Assume that $p(x)=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$, where the $p_{i} \in F[x]$ are distinct monic irreducible polynomials, $i=1, \cdots, k$, and the r_{i} are positive integers. Let $W_{i}=\left\{\alpha \in V \mid p_{i}(T)^{r_{i}}(\alpha)=0\right\}$.
(a) (10 pts) Describe how to obtain linear operators $E_{i}: V \rightarrow V, i=1, \ldots, k$, such that $E_{i}(V)=W_{i}, \quad E_{i}^{2}=E_{i}$ for each $i, \quad E_{i} E_{j}=0$ if $i \neq j$, and $E_{1}+\cdots+E_{k}=I$ is the identity operator on V.
(b) (10 pts) If $p(x)$ is a product of linear polynomials, describe how to obtain a diagonalizable operator D and a nilpotent operator N such that $T=D+N$, where D and N are both polynomials in T.
3. (20 pts) Let V be a finite-dimensional vector space over an infinite field F and let $T: V \rightarrow V$ be a linear operator. Give to V the structure of a module over the polynomial ring $F[x]$ by defining $x \alpha=T(\alpha)$ for each $\alpha \in V$.
(a) Outline a proof that V is a direct sum of cyclic $F[x]$-modules.
(b) In terms of an expression for V as a direct sum of cyclic $F[x]$-modules, what are necessary and sufficient conditions in order that V have only finitely many T-invariant subspaces? Explain.
4. (20 pts) Let V be a finite-dimensional vector space over a field F and let W_{1}, W_{2} and W_{3} be nonzero subspaces of V.
(a) If $W_{1} \cap W_{2}=0$, prove or disprove that every vector β in $W_{1}+W_{2}$ has a unique representation as $\beta=\alpha_{1}+\alpha_{2}$, where $\alpha_{1} \in W_{1}$ and $\alpha_{2} \in W_{2}$.
(b) If $W_{i} \cap W_{j}=0$ for each $i \neq j$ with $i, j \in\{1,2,3\}$, prove or disprove that every vector β in $W_{1}+W_{2}+W_{3}$ has a unique representation as $\beta=\alpha_{1}+\alpha_{2}+\alpha_{3}$, where $\alpha_{i} \in W_{i}, 1 \leq i \leq 3$.
5. (20 pts) Let D be a principal ideal domain, let n be a positive integer, and let $D^{(n)}$ denote a free D-module of rank n.
(a) If L is a submodule of $D^{(n)}$, prove that L is a free D-module of rank $m \leq n$.
(b) If L is a proper submodule of $D^{(n)}$, prove or disprove that rank $L<n$.
6. (15 pts) Let M be a module over an integral domain D. A submodule N of M is pure in M if for every $y \in N$ and $a \in D$ the following condition holds: if $a x=y$ for some $x \in M$, then there exists $z \in N$ with $a z=y$.
(a) If $M=\langle m\rangle$ is a cyclic \mathbb{Z}-module of order 24 , list all the pure submodules of M.
(b) For a submodule N of M and $x \in M$, let $\bar{x}=x+N$ denote the coset representing the image of x in M / N. Prove that ann $\bar{x}:=\{a \in D \mid a \bar{x}=0\} \supseteq$ ann $x:=\{a \in D \mid a x=0\}$.
(c) If N is pure in M, and ann \bar{x} is the principal ideal (d) of D, prove that there exists $x^{\prime} \in M$ such that $x+N=x^{\prime}+N$ and ann $x^{\prime}=(d)$.
7. (13 pts) Let M be a finitely generated module over the polynomial ring $F[x]$, where F is a field, and let N be a pure submodule of M. Prove that there exists a submodule L of M such that $N+L=M$ and $N \cap L=0$.
8. (18 pts) Let $T: V \rightarrow V$ be a linear operator on a finite-dimensional vector space V and let $R=T(V)$ denote the range of T.
(a) Prove that R has a complementary T-invariant subspace if and only if R is independent of the null space N of T, i.e., $R \cap N=0$.
(b) If R and N are independent, prove that N is the unique T-invariant subspace of V that is complementary to R.
9. (20 pts) Let A and B be in $\mathbb{Q}^{n \times n}$ and let $I \in \mathbb{Q}^{n \times n}$ denote the identity matrix.
(a) State true or false and justify: if A and B are similar over an extension field F of \mathbb{Q}, then A and B are similar over \mathbb{Q}.
(b) Let M and N be $n \times n$ matrices over the polynomial ring $\mathbb{Q}[x]$. Define " M and N are equivalent over $\mathbb{Q}[x]$."
(c) State true or false and justify: If $\operatorname{det}(x I-A)=\operatorname{det}(x I-B)$, then $x I-A$ and $x I-B$ are equivalent over $\mathbb{Q}[x]$.
(d) State true or false and justify: If $x I-A$ and $x I-B$ are equivalent over $\mathbb{Q}[x]$, then A and B are similar over \mathbb{Q}.
10. (18 pts) Let $A \in \mathbb{C}^{4 \times 4}$ be a diagonal matrix with exactly three distinct entries on its main diagonal.
(a) What is the dimension of the vector space over \mathbb{C} of matrices that are polynomials in A ?
(b) What is the dimension of the vector space over \mathbb{C} of matrices $B \in \mathbb{C}^{4 \times 4}$ such that $A B=$ $B A$?
(c) If $B \in \mathbb{C}^{4 \times 4}$ is a diagonal matrix with exactly three distinct entries on its main diagonal, is B similar to a polynomial in A ? Justify your answer.
11. (8 pts) Let V be an abelian group with generators $\left(v_{1}, v_{2}, v_{3}\right)$ that has the matrix $\left[\begin{array}{ccc}4 & 0 & 8 \\ 4 & 12 & 0\end{array}\right]$ as a relation matrix. Express V as a direct sum of cyclic groups.
12. (8 pts) Let V be an abelian group with generators $\left(v_{1}, v_{2}, v_{3}\right)$ that has the matrix $\left[\begin{array}{ccc}4 & 0 & 8 \\ 4 & 12 & 0 \\ 2 & 2 & 0\end{array}\right]$ as a relation matrix. Express V as a direct sum of cyclic groups.
