QUALIFYING EXAMINATION

January 2014

MA 554

1. (11 points) Let R be an integral domain. Recall that an R-module is called torsionfree if for every element $a \neq 0$ in R and $m \neq 0$ in the module, $a m \neq 0$. Let N be an R-submodule of an R-module M.
(a) Show that if N and M / N are torsionfree, then so is M.
(b) Show that the converse holds in (a) for every N, M if and only if R is a field.
2. (11 points) Let K be a field and V a vector space over K. Let φ and ψ be K-endomorphisms of V so that $\varphi \psi=0$ and $\operatorname{id}_{V}=\varphi+\psi$. Show that $V=\operatorname{im}(\varphi) \oplus \operatorname{im}(\psi)$.
3. (14 points) Let R be an integral domain and let A, B be n by n matrices with entries in R. Assume that $A B=a I_{n}$, where $a \neq 0$ is in R and I_{n} denotes the n by n identity matrix. Show that $A B=B A$.
4. (17 points) Up to $\mathbb{Q}[x]$-isomorphisms, determine all $\mathbb{Q}[x]$-modules M that are annihilated by the polynomial $x\left(x^{3}-2\right)^{3}$ and satisfy $\operatorname{dim}_{\mathbb{Q}} M=8$. How many non-isomorphic $\mathbb{Q}[x]$-modules of this type are there?
5. (15 points) Over an arbitrary field, consider the matrix

$$
A=\left(\begin{array}{cccc}
0 & -1 & 1 & 0 \\
0 & -2 & 2 & -1 \\
-1 & 0 & 0 & -1 \\
-2 & 1 & 0 & -2
\end{array}\right)
$$

Find the Jordan canonical form of A.
6. (15 points) Let A be a $2 n$ by $2 n$ matrix with entries in \mathbb{R} satisfying $A^{2}=-I_{2 n}$. Show that A is similar to the matrix

$$
\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)
$$

7. (17 points) Let V be a finite-dimensional inner product space over K, where $K=\mathbb{R}$ or $K=\mathbb{C}$. Let φ be a K-endomorphism of V and write φ^{T} for its adjoint.
(a) Show that $\operatorname{ker}\left(\varphi^{T}\right)=(\operatorname{im}(\varphi))^{\perp}$.
(a) Show that $\operatorname{ker}(\varphi)=(\operatorname{im}(\varphi))^{\perp}$ if φ is normal.
(b) Show that $\operatorname{ker}\left(\varphi^{n}\right)=\operatorname{ker}(\varphi)$ for every $n \geq 1$ if φ is normal.
