T.T.Moh

Math 554 Qualifying Examination

- This is a two hour test.
- Write your answers on the test paper!
- For decimal approximations, it is enough to give 2 decimal places.
- Show your work such that your reasoning can be followed.
- There are 10 pages, 10 questions, 20 points each and 200 points on this test.
 - 1. Let $A \in M_{n \times n}(S)$ (the module of $n \times n$ matrices over the ring S). Prove that A is invertible iff det(A) is an unit in S.

2. Let $A \in M_{3\times 3}(R)$ (the vector space of 3×3 matrices over the real field R). Show that if A is not similar over R to a trianglar matrix, then A is similar over the complex number field C to a diagonal matrix.

3. Let $M = (f_1, f_2, f_3)^T$ be a matrix over R[x] where R[x] is the ring of real polynomials and $f_1 = (x - 3, 1, 0), f_2 = (1, x - 3, 0), f_3 = (0, 0, x - 4)$ be the three row vectors of M. Show that M is equavalent to a diagonal matrix with diagonals (c_i) for i = 1, 2, 3 and $c_i|_{c_{i+1}}$.

4. Show that the product of two self-adjoint operators is self-adjoint if and only if the two operators commute.

5. Let R be the field of real numbers. Let W be the subspace of R^4 generated by $(1, 0, 0, 0)^T$, $(0, 0, 1, 1)^T$. Given $x = (1, 2, 1, 2)^T$. Find $y, z \in R^4$ such that x = y + z and $y \in W, z \in W^{\perp}$. 6. Let A be the following matrix, $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix}$. Find the characteristic polynomial and the minimal polynomial of A. Can A be diagonalized over the complex numbers

C?

7. Find an orthonormal basis for P_2 , the vector space of all real polynomials of degree ≤ 2 under the inner product defined as

$$\langle f|g \rangle = \int_0^2 fg \, dx$$

8. Let V be an inner product space (finite or infinite dimensional), show that every isometry T, i.e., $\langle Tv, Tu \rangle = \langle v, u \rangle$ for all $u, v \in V$, is injective.

9. Recall that an $n \times n$ matrix S over the real space \mathbb{R}^n is said to be a rotation matrix iff S is orthogonal and det(S) = 1. Show that a rotation matrix A of \mathbb{R}^3 (the real 3-dimensional space) must have 1 as an eigenvalue.

10. Let A be the matrix over complex numbers as follows,

$$A = \left(\begin{array}{rrrr} 0 & 1 & 3\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right).$$

Find matrices D, J such that $D^{-1}AD = J$ where J is the Jordan canonical form of A.