- This is a two hour test.
- Write your answers on the test paper!
- For decimal approximations, it is enough to give 2 decimal places.
- Show your work such that your reasoning can be followed.
- There are 10 pages, 10 questions, 20 points each and 200 points on this test.

1. Let $A \in M_{n \times n}(S)$ (the module of $n \times n$ matrices over the ring S). Prove that A is invertible iff $\operatorname{det}(A)$ is an unit in S.

page 2

2. Let $A \in M_{3 \times 3}(R)$ (the vector space of 3×3 matrices over the real field R). Show that if A is not similar over R to a trianglar matrix, then A is similar over the complex number field C to a diagonal matrix.
3. Let $M=\left(f_{1}, f_{2}, f_{3}\right)^{T}$ be a matrix over $R[x]$ where $R[x]$ is the ring of real polynomials and $f_{1}=(x-3,1,0), f_{2}=(1, x-3,0), f_{3}=(0,0, x-4)$ be the three row vectors of M. Show that M is equavalent to a diagonal matrix with diagonals $\left(c_{i}\right)$ for $i=1,2,3$ and $c_{i} \mid c_{i+1}$.
4. Show that the product of two self-adjoint operators is self-adjoint if and only if the two operators commute.
page 5
5. Let R be the field of real numbers. Let W be the subspace of R^{4} generated by $(1,0,0,0)^{T},(0,0,1,1)^{T}$. Given $x=(1,2,1,2)^{T}$. Find $y, z \in R^{4}$ such that $x=y+z$ and $y \in W, z \in W^{\perp}$.
page 6
6. Let A be the following matrix, $A=\left(\begin{array}{rrrr}1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0\end{array}\right)$. Find the characteristic polynomial and the minimal polynomial of A. Can A be diagonalized over the complex numbers C ?
7. Find an orthonormal basis for P_{2}, the vector space of all real polynomials of degree ≤ 2 under the inner product defined as

$$
<f \mid g>=\int_{0}^{2} f g d x
$$

8. Let V be an inner product space (finite or infinite dimensional), show that every isometry T, i.e., $<T v, T u>=<v, u>$ for all $u, v \in V$, is injective.
9. Recall that an $n \times n$ matrix S over the real space R^{n} is said to be a rotation matrix iff S is orthogonal and $\operatorname{det}(S)=1$. Show that a rotation matrix A of R^{3} (the real 3-dimensinal space) must have 1 as an eigenvalue.
10. Let A be the matrix over complex numbers as follows,

$$
A=\left(\begin{array}{lll}
0 & 1 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Find matrices D, J such that $D^{-1} A D=J$ where J is the Jordan canonical form of A.

