LINEAR ALGEBRA COMPREHENSIVE EXAM - JAN, 2012

Attempt all questions. Time 2 hrs

1. Let A be a commutative ring with identity, and let E be a free A-module of finite rank, and $u \in \operatorname{End}_{A}(E)$.
(a) (2 pts) Give a basis free definition of $\operatorname{det}(u)$.
(b) (8 pts) Prove that the following are equivalent.
(i) u is bijective.
(ii) u is surjective.
(iii) $\operatorname{det}(u)$ is invertible in A.
2. Let k be an algebraically closed field, V a finite dimensional k-vector space and $u \in \operatorname{End}(V)$.
(a) (2 pts) Define the minimal polynomial of u.
(b) (6 pts) Prove that u is diagonalizable if and only if its minimal polynomial has simple roots.
(c) (2 pts) Is the same true if we replace "minimal polynomial" by the characteristic polynomial ? Justify your answer.
3. Let k be a field, V an n dimensional vector space and $u \in$ End (V).
(a) (2pts) Define the similarity invariants, q_{1}, \ldots, q_{n} of u.
(b) (4 pts) Prove that the characteristic polynomial χ_{u} is equal to the product $q_{1} \cdots q_{n}$.
(c) (2pts) What are the similarity invariants for the identity and the zero endomorphisms?
(d) (2pts) Classify upto similarity all $n \times n$ complex matrices A, such that $A^{n}=0$.
4. Let V be an n-dimensional complex inner product space.
(a) (2 pts) Prove that there exists an orthonormal basis of V.
(b) (2 pts) Define unitary transformations in a basis free way.
(c) (2 pts) Define the adjoint, v^{*} of an endomorphism $v \in$ $\operatorname{End}(V)$ is a basis free way.
(d) (2 pts) Show that if U is an unitary transformation of V, then $u u^{*}=\mathrm{Id}_{n}$.
(e) (2 pts) Prove that if $v \in \operatorname{End}(V)$ and W is a subspace of V closed under v, then W^{\perp} is closed under v^{*}.

5 . Let k be an algebraically closed field and let V be a finite dimensional k vector space.
(a) (2 pts) State completely (but do not prove) the (additive) Jordan decomposition theorem.
(b) (4 pts) Let $u=u_{s}+u_{n}, v=v_{s}+v_{n}$ be the Jordan decomposition of two commuting endomorphisms $u, v \in \operatorname{End}(V)$. Deduce the Jordan decompositions of $u+v$ and $u v$. Justify your answer using the statement in the previous part.
(c) (2 pts) State the multiplicative Jordan decomposition theorem.
(d) (2 pts) If $v \in \operatorname{End}(V)$ is unipotent, then what is the characteristic polynomial of v ? Justify your answer.

