T.T.Moh Math 554 Qualifying Examination

August 2012

- This is a two hour test.
- Write your answers on the test paper!
- For decimal approximations, it is enough to give 2 decimal places.
- Show your work such that your reasoning can be followed.
- There are 10 pages, 10 questions, 20 points each and 200 points on this test.
 - 1. Let $A \in M_{n \times n}(K)$ (the vector space of $n \times n$ matrices over a field K). State and prove the Cayley-Hamilton Theorem for A.

2. Let $S = R[x]^3/(f_1, f_2, f_3)$ be a module over R[x] where R[x] is the ring of real polynomials and $f_1 = (x, 1, 0), f_2 = (1, x, 0), f_3 = (0, 0, x - 1)$ be three elements in $R[x]^3$. Express $R[x]^3/(f_1, f_2, f_3)$ as direct sum of modules $\bigoplus_{i=1}^m R[x]/(c_i)$ such that $m \leq 3$ and $c_i|c_{i+1}$. (The fundamental theorem of finitely generated modules over P.I.D.) 3. Show that the Z-module Z/nZ is not projective for integer $n \ge 2$.

4. Show that $Ext_Z^1(Z/mZ,Z) \approx Z/mZ$ for $m \ge 2$.

5. Find the best straight line fit (least square approximation) to the measurement b = 1 at t = 0, b = 3 at t = 1, b = 3 at t = 2.

page 6

6. Find an orthonormal basis for P_3 , the vector space of all polynomials of degree ≤ 3 under the inner product defined as

$$\langle f|g \rangle = \int_0^1 fg \, dx$$

7. Let R be the field of real numbers. Let W be the subspace of R^4 generated by $(1, 1, 0, 0)^T$, $(0, 0, 1, 1)^T$. Given $x = (1, 2, 3, 4)^T$. Find $y, z \in R^4$ such that x = y + z and $y \in W, z \in W^{\perp}$. 8. Find an 2×2 matrix A which has all the principal minors positive and which is not a positive matrix.

9. Let A be the matrix over complex numbers as follows,

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{array} \right).$$

Find the Jordan canonical form of A.

10. Decide if the following function has a local minima at the origin;

$$f(x, y, z) = 3x^{2} + 6xy + 2xz + 4y^{2} + 3yz + 2z^{2}$$