LINEAR ALGEBRA COMPREHENSIVE EXAM – JAN, 2011

Attempt all questions. Time 2 hrs

- (1) Let C be a commutative ring with identity, E be a finitely generated projective C-module, and $u \in \text{End}_C(E)$.
 - (a) (2 pts) Define Tr(u) (trace of u).
 - (b) (8 pts) Let F be another finitely generated projective module and $v: E \to F$, and $w: F \to E$ be two linear maps. Prove that

$$\operatorname{Tr}(v \circ w) = \operatorname{Tr}(w \circ v).$$

- (2) Let L be a free module over a principal ideal domain A, and let M be a submodule of finite rank n.
 - (a) (2 pts) Given $x \in L$ define the content, $\mathfrak{c}_L(x)$, of x.
 - (b) (10 pts) Prove that there exists a basis B of L, and n elements e_1, \ldots, e_n of B, and corresponding elements $\alpha_1, \ldots, \alpha_n$ of A such that:
 - (i) $\alpha_1 e_1, \ldots, \alpha_n e_n$ form a basis of M;
 - (ii) α_i divides α_{i+1} for $1 \leq i \leq n-1$.
 - (c) (8 pts) Prove that every finitely generated module E over a principal ideal domain A is a direct sum of a finite number of cyclic modules.
- (3) Let k be a field and V a finite dimensional k-vector space, and $u \in \operatorname{End}_k(V)$. Let $V[X] = k[X] \otimes_k V$.
 - (a) (2 pts) Define the k[X]-module V_u . Which subspaces of V are sub-modules of V_u ?
 - (b) (2 pts) Prove that there exists a linear map $\phi : V[X] \to V_u$, such that for every $p \in k[X]$ and $v \in V$, $\phi(p \otimes v) = p(u) \cdot v$.
 - (c) (6 pts) Prove that the following sequence

$$V[X] \xrightarrow{X - \bar{u}} V[X] \xrightarrow{\phi} V_u \to 0$$

is exact.

- (d) (10 pts) Recall that the characteristic polynomial $\chi_u \in k[X]$ is defined to be the determinant of the endomorphism $X \bar{u}$ of the free k[X]-module V[X]. Prove Cayley-Hamilton's theorem, namely that $\chi_u(u) = 0$ in $\text{End}_k(V)$.
- (4) Let k be a field and V be a finite dimensional k vector space, and A, B two endomorphisms of V.

- (a) (8 pts) Prove or disprove that A is diagonalizable if and only if the minimal polynomial of A equals its characteristic polynomial.
- (b) (6 pts) Suppose that A, B commute. Prove that each eigenspace of A is closed under B.
- (c) (2 pts) What does it mean to say that A and B are simultaneously diagonalizable ?
- (d) (10 pts) Prove that A, B are simultaneously diagonalizable if and only if both A and B are diagonalizable and AB = BA.
- (e) (4 pts) Let $k = \mathbb{C}$ and $V = \mathbb{C}^2$. Give an example of an endomorphism of V that is not diagonalizable.
- (5) Let V be a complex inner product space and T an endomorphism of V.
 - (a) (2 pts) Define (when it exists) the adjoint, T^* of T.
 - (b) (4 pts) Prove that if T is self-adjoint and α is an eigenvalue of T, then $\alpha \in \mathbb{R}$.
 - (c) (4 pts) Prove that if W is a subspace of V closed under T, then W^{\perp} is closed under T^* .
 - (d) (10 pts) Prove that a finite dimensional complex inner product space has an orthogonal basis consisting of eigenvectors of T, if T is a self-adjoint endomorphism of V.