LINEAR ALGEBRA COMPREHENSIVE EXAM - JAN, 2011

Attempt all questions. Time 2 hrs
(1) Let C be a commutative ring with identity, E be a finitely generated projective C-module, and $u \in \operatorname{End}_{C}(E)$.
(a) (2 pts) Define $\operatorname{Tr}(u)$ (trace of $u)$.
(b) (8 pts) Let F be another finitely generated projective module and $v: E \rightarrow F$, and $w: F \rightarrow E$ be two linear maps. Prove that

$$
\operatorname{Tr}(v \circ w)=\operatorname{Tr}(w \circ v) .
$$

(2) Let L be a free module over a principal ideal domain A, and let M be a submodule of finite rank n.
(a) (2 pts) Given $x \in L$ define the content, $\mathfrak{c}_{L}(x)$, of x.
(b) (10 pts) Prove that there exists a basis B of L, and n elements e_{1}, \ldots, e_{n} of B, and corresponding elements $\alpha_{1}, \ldots, \alpha_{n}$ of A such that:
(i) $\alpha_{1} e_{1}, \ldots, \alpha_{n} e_{n}$ form a basis of M;
(ii) α_{i} divides α_{i+1} for $1 \leq i \leq n-1$.
(c) $(8 \mathrm{pts})$ Prove that every finitely generated module E over a principal ideal domain A is a direct sum of a finite number of cyclic modules.
(3) Let k be a field and V a finite dimensional k-vector space, and $u \in \operatorname{End}_{k}(V)$. Let $V[X]=k[X] \otimes_{k} V$.
(a) (2 pts) Define the $k[X]$-module V_{u}. Which subspaces of V are sub-modules of V_{u} ?
(b) (2 pts) Prove that there exists a linear map $\phi: V[X] \rightarrow V_{u}$, such that for every $p \in k[X]$ and $v \in V, \phi(p \otimes v)=p(u) \cdot v$.
(c) (6 pts) Prove that the following sequence

$$
V[X] \xrightarrow{X-\bar{u}} V[X] \xrightarrow{\phi} V_{u} \rightarrow 0
$$

is exact.
(d) (10 pts) Recall that the characteristic polynomial $\chi_{u} \in$ $k[X]$ is defined to be the determinant of the endomorphism $X-\bar{u}$ of the free $k[X]$-module $V[X]$. Prove CayleyHamilton's theorem, namely that $\chi_{u}(u)=0$ in $\operatorname{End}_{k}(V)$.
(4) Let k be a field and V be a finite dimensional k vector space, and A, B two endomorphisms of V.
(a) (8 pts) Prove or disprove that A is diagonalizable if and only if the minimal polynomial of A equals its characteristic polynomial.
(b) (6 pts) Suppose that A, B commute. Prove that each eigenspace of A is closed under B.
(c) (2 pts) What does it mean to say that A and B are simultaneously diagonalizable ?
(d) (10 pts) Prove that A, B are simultaneously diagonalizable if and only if both A and B are diagonalizable and $A B=$ $B A$.
(e) (4 pts) Let $k=\mathbb{C}$ and $V=\mathbb{C}^{2}$. Give an example of an endomorphism of V that is not diagonalizable.
(5) Let V be a complex inner product space and T an endomorphism of V.
(a) (2 pts) Define (when it exists) the adjoint, T^{*} of T.
(b) (4 pts) Prove that if T is self-adjoint and α is an eigenvalue of T, then $\alpha \in \mathbb{R}$.
(c) (4 pts) Prove that if W is a subspace of V closed under T, then W^{\perp} is closed under T^{*}.
(d) (10 pts) Prove that a finite dimensional complex inner product space has an orthogonal basis consisting of eigenvectors of T, if T is a self-adjoint endomorphism of V.

