PUID: \qquad

Instructions:

1. The point value of each exercise occurs to the left of the problem.
2. No books or notes or calculators are allowed.

Page	Points Possible	Points
2	20	
3	18	
4	18	
5	16	
6	16	
7	17	
8	16	
9	20	
10	14	
11	15	
12	14	
13	200	
Total		

Notation: Let F be a field, let n be a positive integer, and let V be an n-dimensional vector space over F. Let S and T be linear operators on V.

1. (13 pts) If T has n distinct characteristic values and S commutes with T, prove that there exists a polynomial $f(t) \in F[t]$ such that $S=f(T)$.
2. (7 pts) Prove or disprove: If S commutes with T and $a \in F$, then the null space of $T-a I$ is invariant for S.

Notation: If K is a commutative ring and m and n are positive integers, then $K^{m \times n}$ denotes the K-module of $m \times n$ matrices with entries in K.
3. (6 pts) State true or false and justify: If $\mathcal{F} \subset \mathbb{C}^{4 \times 4}$ is a subspace of commuting matrices, then $\operatorname{dim} \mathcal{F} \leq 4$.
4. (12 pts) Consider the abelian group $V=\mathbb{Z} /\left(5^{4}\right) \oplus \mathbb{Z} /\left(5^{3}\right) \oplus \mathbb{Z}$.
(a) Write down a relation matrix for V as a \mathbb{Z}-module.
(b) Let W be the cyclic subgroup of V generated by the image of the element $\left(5^{2}, 5,5\right)$ in $\mathbb{Z} /\left(5^{4}\right) \oplus \mathbb{Z} /\left(5^{3}\right) \oplus \mathbb{Z}$. Write down a relation matrix for W.
(c) Write down a relation matrix for the quotient module V / W.
5. Let K be a commutative ring with identity, n a positive integer, and let $D: K^{n \times n} \rightarrow K$ be a function.
(a) (3 pts) Define " D is n-linear".
(b) (3 pts) If D is n-linear, define " D is alternating".
(c) (3 pts) Define " D is a determinant function."
(d) (4 pts) If $n=3$ and K is a field, what is the dimension of the K-vector space of all 3 -linear functions on $K^{3 \times 3}$?
(e) (5 pts) If K is the polynomial ring $\mathbb{Q}\left[\left\{x_{i j}\right\}\right]$, where $1 \leq i \leq 5,1 \leq j \leq 5$, and $A=\left(x_{i j}\right) \in$ $K^{5 \times 5}$, then $\operatorname{det} A$ is a sum of monomials in the $x_{i j}$. How many terms are in this sum? Explain.
6. (8 pts) Let V be an n-dimensional vector space over the field F and let $T: V \rightarrow V$ be a linear operator. Assume that $c \in F$ is such that there exists a nonzero vector α with $T \alpha=c \alpha$. Prove that there exists a nonzero linear functional f on V such that $T^{t} f=c f$, where T^{t} is the transpose of T.
7. (8 pts) Let F be a field and let L be a linear functional on the polynomial ring $F[x]$ having the property that $L(f g)=L(f) L(g)$ for all polynomials $f, g \in F[x]$. Prove that either $L=0$ or there exists $c \in F$ such that $L(f)=f(c)$ for all $f \in F[x]$.
8. Let V be a finite-dimensional vector space over a field F, let $T: V \rightarrow V$ be a linear operator, and let $p(x) \in F[x]$ be the minimal polynomial of T. Assume that $p(x)=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$, where the $p_{i} \in F[x]$ are distinct monic irreducible polynomials, $i=1, \cdots, k$, and the r_{i} are positive integers. Let $W_{i}=\left\{v \in V \mid p_{i}(T)^{r_{i}}(v)=0\right\}$.
(a) (8 pts) Describe how to obtain linear operators $E_{i}: V \rightarrow V, i=1, \ldots, k$, such that $E_{i}(V)=W_{i}, \quad E_{i}^{2}=E_{i}$ for each $i, \quad E_{i} E_{j}=0$ if $i \neq j$, and $E_{1}+\cdots+E_{k}=I$ is the identity operator on V.
(b) (8 pts) If $p(x)$ is a product of linear polynomials, describe how to obtain a diagonalizable operator D and a nilpotent operator N such that $T=D+N$, where D and N are both polynomials in T.
9. (8 pts) Prove or disprove: if V is a vector space over a field F and $T: V \rightarrow V$ is a linear operator such that every subspace of V is invariant under T, then T is a scalar multiple of the identity operator.
10. Let F be a field and let $g(x) \in F[x]$ be a monic polynomial.
(a) (4 pts) Describe the $F[x]$-submodules of $V=F[x] /(g(x))$.
(b) (5 pts) If $g(x)=x^{3}(x-1)$, diagram the lattice of $F[x]$-submodules of $V=F[x] /(g(x))$.
11. (16 pts) Let D be a principal ideal domain and let V and W denote free D-modules of rank 3 and 4, respectively. Assume that $\phi: V \rightarrow W$ is a D-module homomorphism, and that \mathbf{B} $=\left\{v_{1}, v_{2}, v_{3}\right\}$ is an ordered basis of V and $\mathbf{B}^{\prime}=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ is an ordered basis of W.
(a) Define what is meant by the coordinate vector of $v \in V$ with respect to the basis \mathbf{B}.
(b) Describe how to obtain a matrix $A \in D^{4 \times 3}$ so that left multiplication by A on D^{3} represents $\phi: V \rightarrow W$ with respect to \mathbf{B} and \mathbf{B}^{\prime}.
(c) How does the matrix A change if we change the basis \mathbf{B}^{\prime} by replacing w_{2} by $w_{2}+a w_{1}$ for some $a \in D$?
(d) How does the matrix A change if we change the basis \mathbf{B} by replacing v_{2} by $v_{2}+a v_{1}$ for some $a \in D$?
12. (20 pts) Let p be a prime integer and let $F=\mathbb{Z} / p \mathbb{Z}$ be the field with p elements. Let V be a vector space over F and $T: V \rightarrow V$ a linear operator. Assume that T has characteristic polynomial x^{4} and minimal polynomial x^{3}.
(a) Express V as a direct sum of cyclic $F[x]$-modules.
(b) How many 3-dimensional cyclic T-invariant subspaces does V have?
(c) How many of the 3 -dimensional cyclic T-invariant subspaces of V are direct summands of $V ?$
(d) How many noncyclic 3-dimensional T-invariant subspaces does V have?
(e) How many of the noncyclic 3 -dimensional T-invariant subspaces of V are direct summands of V ?
13. (14 pts) Let V be an abelian group generated by elements a, b, c. Assume that $3 a=6 b$, $3 b=6 c, 3 c=6 a$, and that these three relations generate all the relations on a, b, c.
(a) What is the order of V ? Justify your answer.
(b) What is the order of the element a ? Justify your answer
14. (10 pts) Let V be a vector space over an infinite field F. Prove that V is not the union of finitely many of its proper subspaces.
15. (6 pts) Let F be a finite field with $|F|=q$, and let $G=\left\{A \in F^{3 \times 3} \mid \operatorname{det} A \neq 0\right\}$.
(a) What is $|G|$?
(b) Let $H=\{A \in G \mid \operatorname{det} A=1\}$. What is $|H|$?
16. (6 pts) Let $A \in \mathbb{R}^{n \times n}$ and let f_{1}, \ldots, f_{n} be the diagonal entries in the normal form of $x I-A$.
(i) For which matrices A is $f_{1} \neq 1$?
(ii) For which matrices A is $f_{n-1}=1$?
17. (9 pts) Let $A \in \mathbb{R}^{3 \times 3}$ be such that $\operatorname{det} A=3$ and let $\operatorname{adj}(A) \in \mathbb{R}^{3 \times 3}$ denote the classical adjoint of A.
(a) What is the product $\operatorname{adj}(A) A$?
(b) What is $\operatorname{det}(\operatorname{adj} A)$?
(c) What is $\operatorname{adj}(\operatorname{adj} A)$?
18. (6 pts) Let V be a 4-dimensional vector space over the field F and let $T: V \rightarrow V$ be a linear operator such that $\operatorname{rank} T=1$. List all polynomials $p(x) \in F[x]$ that are possibly the minimal polynomial of T. Explain.
19. (8 pts) Let F be a field and let $V=F^{4 \times 4}$. Let W be the subspace of V spanned by all matrices of the form $C=A B-B A$, where $A, B \in V$. Prove that W is the subspace of V of matrices having trace zero.

