PUID: _____

Instructions:

- 1. The point value of each exercise occurs to the left of the problem.
- 2. No books or notes or calculators are allowed.

Page	Points Possible	Points
2	20	
3	18	
4	18	
5	16	
6	16	
7	17	
8	16	
9	20	
10	14	
11	16	
12	15	
13	14	
Total	200	

Notation: Let F be a field, let n be a positive integer, and let V be an n-dimensional vector space over F. Let S and T be linear operators on V.

1. (13 pts) If T has n distinct characteristic values and S commutes with T, prove that there exists a polynomial $f(t) \in F[t]$ such that S = f(T).

2. (7 pts) Prove or disprove: If S commutes with T and $a \in F$, then the null space of T - aI is invariant for S.

Notation: If K is a commutative ring and m and n are positive integers, then $K^{m \times n}$ denotes the K-module of $m \times n$ matrices with entries in K.

3. (6 pts) State true or false and justify: If $\mathcal{F} \subset \mathbb{C}^{4 \times 4}$ is a subspace of commuting matrices, then dim $\mathcal{F} \leq 4$.

- 4. (12 pts) Consider the abelian group $V = \mathbb{Z}/(5^4) \oplus \mathbb{Z}/(5^3) \oplus \mathbb{Z}$.
 - (a) Write down a relation matrix for V as a \mathbb{Z} -module.

(b) Let W be the cyclic subgroup of V generated by the image of the element $(5^2, 5, 5)$ in $\mathbb{Z}/(5^4) \oplus \mathbb{Z}/(5^3) \oplus \mathbb{Z}$. Write down a relation matrix for W.

(c) Write down a relation matrix for the quotient module V/W.

- 5. Let K be a commutative ring with identity, n a positive integer, and let $D: K^{n \times n} \to K$ be a function.
 - (a) (3 pts) Define "D is *n*-linear".

(b) (3 pts) If D is *n*-linear, define "D is alternating".

(c) (3 pts) Define "D is a determinant function."

(d) (4 pts) If n = 3 and K is a field, what is the dimension of the K-vector space of all 3-linear functions on $K^{3\times 3}$?

(e) (5 pts) If K is the polynomial ring $\mathbb{Q}[\{x_{ij}\}]$, where $1 \leq i \leq 5, 1 \leq j \leq 5$, and $A = (x_{ij}) \in K^{5 \times 5}$, then det A is a sum of monomials in the x_{ij} . How many terms are in this sum? Explain.

6. (8 pts) Let V be an n-dimensional vector space over the field F and let $T: V \to V$ be a linear operator. Assume that $c \in F$ is such that there exists a nonzero vector α with $T\alpha = c\alpha$. Prove that there exists a nonzero linear functional f on V such that $T^t f = cf$, where T^t is the transpose of T.

7. (8 pts) Let F be a field and let L be a linear functional on the polynomial ring F[x] having the property that L(fg) = L(f)L(g) for all polynomials $f, g \in F[x]$. Prove that either L = 0 or there exists $c \in F$ such that L(f) = f(c) for all $f \in F[x]$.

- 8. Let V be a finite-dimensional vector space over a field F, let $T: V \to V$ be a linear operator, and let $p(x) \in F[x]$ be the minimal polynomial of T. Assume that $p(x) = p_1^{r_1} \cdots p_k^{r_k}$, where the $p_i \in F[x]$ are distinct monic irreducible polynomials, $i = 1, \cdots, k$, and the r_i are positive integers. Let $W_i = \{v \in V \mid p_i(T)^{r_i}(v) = 0\}$.
 - (a) (8 pts) Describe how to obtain linear operators $E_i : V \to V$, i = 1, ..., k, such that $E_i(V) = W_i$, $E_i^2 = E_i$ for each i, $E_i E_j = 0$ if $i \neq j$, and $E_1 + \cdots + E_k = I$ is the identity operator on V.

(b) (8 pts) If p(x) is a product of linear polynomials, describe how to obtain a diagonalizable operator D and a nilpotent operator N such that T = D + N, where D and N are both polynomials in T.

9. (8 pts) Prove or disprove: if V is a vector space over a field F and $T: V \to V$ is a linear operator such that every subspace of V is invariant under T, then T is a scalar multiple of the identity operator.

- **10.** Let F be a field and let $g(x) \in F[x]$ be a monic polynomial.
 - (a) (4 pts) Describe the F[x]-submodules of V = F[x]/(g(x)).

(b) (5 pts) If $g(x) = x^3(x-1)$, diagram the lattice of F[x]-submodules of V = F[x]/(g(x)).

11. (16 pts) Let D be a principal ideal domain and let V and W denote free D-modules of rank 3 and 4, respectively. Assume that $\phi : V \to W$ is a D-module homomorphism, and that $\mathbf{B} = \{v_1, v_2, v_3\}$ is an ordered basis of V and $\mathbf{B}' = \{w_1, w_2, w_3, w_4\}$ is an ordered basis of W.

(a) Define what is meant by the coordinate vector of $v \in V$ with respect to the basis **B**.

(b) Describe how to obtain a matrix $A \in D^{4\times 3}$ so that left multiplication by A on D^3 represents $\phi: V \to W$ with respect to **B** and **B'**.

(c) How does the matrix A change if we change the basis \mathbf{B}' by replacing w_2 by $w_2 + aw_1$ for some $a \in D$?

(d) How does the matrix A change if we change the basis **B** by replacing v_2 by $v_2 + av_1$ for some $a \in D$?

- 12. (20 pts) Let p be a prime integer and let $F = \mathbb{Z}/p\mathbb{Z}$ be the field with p elements. Let V be a vector space over F and $T: V \to V$ a linear operator. Assume that T has characteristic polynomial x^4 and minimal polynomial x^3 .
 - (a) Express V as a direct sum of cyclic F[x]-modules.
 - (b) How many 3-dimensional cyclic T-invariant subspaces does V have?

(c) How many of the 3-dimensional cyclic T-invariant subspaces of V are direct summands of V?

(d) How many noncyclic 3-dimensional T-invariant subspaces does V have?

(e) How many of the noncyclic 3-dimensional T-invariant subspaces of V are direct summands of V?

- **13.** (14 pts) Let V be an abelian group generated by elements a, b, c. Assume that 3a = 6b, 3b = 6c, 3c = 6a, and that these three relations generate all the relations on a, b, c.
 - (a) What is the order of V? Justify your answer.

(b) What is the order of the element a? Justify your answer

14. (10 pts) Let V be a vector space over an infinite field F. Prove that V is not the union of finitely many of its proper subspaces.

15. (6 pts) Let F be a finite field with |F| = q, and let $G = \{A \in F^{3 \times 3} \mid \det A \neq 0 \}$. (a) What is |G|?

(b) Let $H = \{A \in G \mid \det A = 1\}$. What is |H|?

16. (6 pts) Let $A \in \mathbb{R}^{n \times n}$ and let f_1, \ldots, f_n be the diagonal entries in the normal form of xI - A. (i) For which matrices A is $f_1 \neq 1$?

(ii) For which matrices A is $f_{n-1} = 1$?

- 17. (9 pts) Let $A \in \mathbb{R}^{3 \times 3}$ be such that det A = 3 and let $\operatorname{adj}(A) \in \mathbb{R}^{3 \times 3}$ denote the classical adjoint of A.
 - (a) What is the product $\operatorname{adj}(A)A$?

(b) What is $\det(\operatorname{adj} A)$?

(c) What is adj(adjA)?

18. (6 pts) Let V be a 4-dimensional vector space over the field F and let $T: V \to V$ be a linear operator such that rank T = 1. List all polynomials $p(x) \in F[x]$ that are possibly the minimal polynomial of T. Explain.

19. (8 pts) Let F be a field and let $V = F^{4 \times 4}$. Let W be the subspace of V spanned by all matrices of the form C = AB - BA, where $A, B \in V$. Prove that W is the subspace of V of matrices having trace zero.