QUALIFYING EXAMINATION January 2010 MA 554

- 1. (15 points) Let R be a ring (commutative, with identity), M an R-module, and N a submodule of M. Write $\iota : N \hookrightarrow M$ for the natural inclusion map and $-^* = \operatorname{Hom}_R(-, R)$ for R-duals.
 - (a) Show that if M/N is free, then $\iota^*: M^* \to N^*$ is surjective.
 - (b) Give an example showing that the assumption of freeness is needed in part (a).
- **2.** (17 points) Let M be a finitely generated \mathbb{Z} -module (i.e., a finitely generated Abelian group).
 - (a) Let r denote the rank of M (i.e., $M \simeq \mathbb{Z}^r \oplus T$ with T a torsion module). Show that r is the maximal number of linearly independent elements in M.
 - (b) Let N be a (necessarily finitely generated) submodule of M. Show that if M/N is a torsion module, then M and N have the same rank.
- **3.** (16 points) Consider the matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & x^3 + x & x + 1 \\ -x & x^2 - x & x & 0 & 0 \\ 0 & -1 & 0 & -x^3 & -x - 1 \\ x^3 - x^2 + x & x^3 - x^2 & x^2 & 0 & 0 \end{pmatrix}$$

with entries in the polynomial ring $R = \mathbb{Q}[x]$. Determine the dimension of the cokernel of A, considered as a vector space over \mathbb{Q} . (Recall that A defines an R-linear map $R^5 \longrightarrow R^4$ and that every R-module is a vector space over \mathbb{Q} via the inclusion $\mathbb{Q} \subset R$.)

- 4. (11 points) Determine all positive integers n such that there exists an n by n matrix A with coefficients in \mathbb{Q} satisfying $A^3 = 2 \cdot I_n$. (Here I_n denotes the n by n identity matrix.)
- 5. (14 points) Consider the elementary Jordan matrix

$$A = \begin{pmatrix} 0 & & & \\ 1 & \cdot & & & \\ & \cdot & \cdot & & \\ & & \cdot & \cdot & \\ & & & 1 & 0 \end{pmatrix}$$

of size n by n over a field K. Determine the Jordan canonical form of A^2 .

- 6. (12 points) Let R be a domain and A an n by n matrix with entries in R, where $n \ge 2$. Prove that det(adj(A)) = $(det(A))^{n-1}$. (Recall that adj(A) is the n by n matrix whose (i, j)-entry is $(-1)^{i+j}$ times the determinant of the matrix obtained from A by deleting row j and column i.)
- 7. (15 points) Let V be a finite-dimensional vector space over \mathbb{C} . Show that f is a symmetric bilinear form of rank at most 2 on V if and only if there exist φ and ψ in V^{*} such that $f(x, y) = \varphi(x)\psi(y) + \varphi(y)\psi(x)$ for every x and y in V.