QUALIFYING EXAMINATION

January 2010

MA 554

1. (15 points) Let R be a ring (commutative, with identity), M an R-module, and N a submodule of M. Write $\iota: N \hookrightarrow M$ for the natural inclusion map and $-^{*}=\operatorname{Hom}_{R}(-, R)$ for R-duals.
(a) Show that if M / N is free, then $\iota^{*}: M^{*} \rightarrow N^{*}$ is surjective.
(b) Give an example showing that the assumption of freeness is needed in part (a).
2. (17 points) Let M be a finitely generated \mathbb{Z}-module (i.e., a finitely generated Abelian group).
(a) Let r denote the rank of M (i.e., $M \simeq \mathbb{Z}^{r} \oplus T$ with T a torsion module). Show that r is the maximal number of linearly independent elements in M.
(b) Let N be a (necessarily finitely generated) submodule of M. Show that if M / N is a torsion module, then M and N have the same rank.
3. (16 points) Consider the matrix

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & x^{3}+x & x+1 \\
-x & x^{2}-x & x & 0 & 0 \\
0 & -1 & 0 & -x^{3} & -x-1 \\
x^{3}-x^{2}+x & x^{3}-x^{2} & x^{2} & 0 & 0
\end{array}\right)
$$

with entries in the polynomial ring $R=\mathbb{Q}[x]$. Determine the dimension of the cokernel of A, considered as a vector space over \mathbb{Q}. (Recall that A defines an R-linear map $R^{5} \longrightarrow R^{4}$ and that every R-module is a vector space over \mathbb{Q} via the inclusion $\mathbb{Q} \subset R$.)
4. (11 points) Determine all positive integers n such that there exists an n by n matrix A with coefficients in \mathbb{Q} satisfying $A^{3}=2 \cdot I_{n}$. (Here I_{n} denotes the n by n identity matrix.)
5. (14 points) Consider the elementary Jordan matrix

$$
A=\left(\begin{array}{ccccc}
0 & & & & \\
1 & \cdot & & & \\
& \cdot & \cdot & & \\
& & \cdot & \cdot & \\
& & & 1 & 0
\end{array}\right)
$$

of size n by n over a field K. Determine the Jordan canonical form of A^{2}.
6. (12 points) Let R be a domain and A an n by n matrix with entries in R, where $n \geq 2$. Prove that $\operatorname{det}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-1}$. (Recall that $\operatorname{adj}(A)$ is the n by n matrix whose (i, j)-entry is $(-1)^{i+j}$ times the determinant of the matrix obtained from A by deleting row j and column i.)
7. (15 points) Let V be a finite-dimensional vector space over \mathbb{C}. Show that f is a symmetric bilinear form of rank at most 2 on V if and only if there exist φ and ψ in V^{*} such that $f(x, y)=\varphi(x) \psi(y)+\varphi(y) \psi(x)$ for every x and y in V.

