Math 554 Qualifying Exam.

1. Let J_{e} be the $e \times e$ complex matrix with $J_{j+1, j}=1$ for $j=1, \ldots, e-1, J_{i, j}=0$ if $i \neq j+1$. It is the so-called $e \times e$ nilpotent Jordan block.

Let $e_{1} \geq \cdots \geq e_{r}$ be a decreasing sequence of positive integers and let $A=J_{e_{1}, \ldots, e_{r}}$ be the direct sum of $J_{e_{1}}, \ldots, J_{e_{r}}$.
(a) (8 points) Compute $\operatorname{dim} \operatorname{ker} A^{m}$, for $m \geq 0$.
(b) (8 points) Show, without using the structure theorem, that if $J_{e_{1}, \ldots, e_{r}}$ is similar to $J_{f_{1}, \ldots, f_{s}}$ (where $f_{1} \geq \cdots \geq f_{s}$ is another decreasing sequence of positive integers), then $r=s$ and $e_{i}=f_{i}$ for $i=1, \ldots, r$.
(c) (8 points) What is the Jordan form of A^{2} ? It is enough to describe the sizes (and eigenvalues) of its Jordan blocks.
(d) (8 points) What is the Jordan form of $A^{2}+A$?
2. (10 points) Let \mathbb{F}_{2} be the finite field $\mathbb{Z} / 2 \mathbb{Z}$. How many similarity classes of 3×3 invertible matrices over \mathbb{F}_{2} are there? You may use the fact that there are $2,1,2$ monic irreducible polynomial of degree $1,2,3$ respectively. It may help to consider the rational canonical forms.
3. Let $V=M_{2 \times 2}(\mathbb{R})$ be the real vector space of 2×2 real matrices. Define two functions q_{1}, q_{2} : $V \rightarrow \mathbb{R}$ by $q_{1}(A)=\operatorname{Tr}\left(A^{2}\right), q_{2}(A)=\operatorname{Tr}\left(A \cdot A^{t}\right)$, where $\operatorname{Tr}(B)$ is the trace of B and A^{t} is the transpose of A.
(a) (8 points) Show that q_{1} and q_{2} are quadratic forms.
(b) (8 points) What is the signature of q_{1} ?
(c) (8 points) What is the signature of q_{2} ?

Recall that the signature of q is (r, s) if r (resp. s) is the number of positive (resp. negative) entries in the diagonal when q is represented by a diagonal matrix.
4. Let $A=\left(\begin{array}{ccc}2 & -4 & 6 \\ -2 & 10 & -12 \\ 4 & -14 & 18\end{array}\right)$.
(a) (8 points) Find the Smith normal form of A as a matrix over \mathbb{Z}. That is, find integers $d_{1}\left|d_{2}\right| d_{3}$ such that there exist $U, V \in \mathrm{GL}_{3}(\mathbb{Z})$ satisfying $U A V=\left(\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3}\end{array}\right)$.
(b) (8 points) Consider the homomorphism $f: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ defined by $f(x)=A$.x. Describe $\mathbb{Z}^{3} / f\left(\mathbb{Z}^{3}\right)$ as a direct sum of cyclic groups.
5. (8 points) Let $A \cdot \vec{x}=\vec{b}$ be a system of n equations in m variables, where A is an $n \times m$ matrix with entries in \mathbb{Q}. Show that if the system has a solution in \mathbb{C}^{m}, then it has a solution in \mathbb{Q}^{m}.
6. (10 points) Let U be an $n \times n$ unitary matrix such that $I_{n}-U$ is invertible. Show that $A=(I+U) /(I-U)$ satisfies $A^{*}=-A$, where A^{*} is the conjugate transpose of A. Show that the eigenvalues of U are complex numbers λ satisfying $|\lambda|=1$. What can you say about the eigenvalues of A ?

