Math 554 Qualifying Exam.

August, 2009 (Jiu-Kang Yu)

1. Let J_e be the $e \times e$ complex matrix with $J_{j+1,j} = 1$ for $j = 1, \ldots, e-1, J_{i,j} = 0$ if $i \neq j+1$. It is the so-called $e \times e$ nilpotent Jordan block.

Let $e_1 \ge \cdots \ge e_r$ be a decreasing sequence of positive integers and let $A = J_{e_1,\dots,e_r}$ be the direct sum of J_{e_1},\dots,J_{e_r} .

(a) (8 points) Compute dim ker A^m , for $m \ge 0$.

(b) (8 points) Show, without using the structure theorem, that if J_{e_1,\ldots,e_r} is similar to J_{f_1,\ldots,f_s} (where $f_1 \ge \cdots \ge f_s$ is another decreasing sequence of positive integers), then r = s and $e_i = f_i$ for $i = 1, \ldots, r$.

(c) (8 points) What is the Jordan form of A^2 ? It is enough to describe the sizes (and eigenvalues) of its Jordan blocks.

(d) (8 points) What is the Jordan form of $A^2 + A$?

2. (10 points) Let \mathbb{F}_2 be the finite field $\mathbb{Z}/2\mathbb{Z}$. How many similarity classes of 3×3 invertible matrices over \mathbb{F}_2 are there? You may use the fact that there are 2,1,2 monic irreducible polynomial of degree 1, 2, 3 respectively. It may help to consider the rational canonical forms.

3. Let $V = M_{2\times 2}(\mathbb{R})$ be the real vector space of 2×2 real matrices. Define two functions $q_1, q_2 : V \to \mathbb{R}$ by $q_1(A) = \text{Tr}(A^2), q_2(A) = \text{Tr}(A \cdot A^t)$, where Tr(B) is the trace of B and A^t is the transpose of A.

- (a) (8 points) Show that q_1 and q_2 are quadratic forms.
- (b) (8 points) What is the signature of q_1 ?
- (c) (8 points) What is the signature of q_2 ?

Recall that the signature of q is (r, s) if r (resp. s) is the number of positive (resp. negative) entries in the diagonal when q is represented by a diagonal matrix.

4. Let
$$A = \begin{pmatrix} 2 & -4 & 6 \\ -2 & 10 & -12 \\ 4 & -14 & 18 \end{pmatrix}$$
.

(a) (8 points) Find the Smith normal form of A as a matrix over \mathbb{Z} . That is, find integers $d_1|d_2|d_3$ $\begin{pmatrix} d_1 & 0 & 0 \\ 0 & 0 \end{pmatrix}$

such that there exist $U, V \in \operatorname{GL}_3(\mathbb{Z})$ satisfying $UAV = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}$.

(b) (8 points) Consider the homomorphism $f : \mathbb{Z}^3 \to \mathbb{Z}^3$ defined by f(x) = A.x. Describe $\mathbb{Z}^3/f(\mathbb{Z}^3)$ as a direct sum of cyclic groups.

5. (8 points) Let $A.\vec{x} = \vec{b}$ be a system of *n* equations in *m* variables, where *A* is an $n \times m$ matrix with entries in \mathbb{Q} . Show that if the system has a solution in \mathbb{C}^m , then it has a solution in \mathbb{Q}^m .

6. (10 points) Let U be an $n \times n$ unitary matrix such that $I_n - U$ is invertible. Show that A = (I + U)/(I - U) satisfies $A^* = -A$, where A^* is the conjugate transpose of A. Show that the eigenvalues of U are complex numbers λ satisfying $|\lambda| = 1$. What can you say about the eigenvalues of A?