Qualifying Examination
Jandary, 2008
Math 554

You have to show your work.

1. Let A be the following matrix,

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
6 & 11 & 12 \\
-4 & -7 & -8
\end{array}\right)
$$

(5 pts) (a): Find all eigenvalues of A.
(5 pts) (b): Is A diagonalizable?
(15 pts) 2. A reflection A on \mathbb{R}^{n} is defined to be a linear transformation A of \mathbb{R}^{n} which preserves the length of all vectors and reverse the orientation (i.e., with determinant $(A)=-1)$. Let A be a reflection on \mathbb{R}^{3}, show that -1 is an eigenvalue of A.
(15 pts) 3. Express the commutative group $\mathbb{Z}^{3} /\left(f_{1}, f_{2}, f_{3}\right)$ where $f_{1}=(1,2,3), f_{2}=(4,6,8), f_{3}=$ $(6,10,12)$ as a direct sum of cyclic groups.
(10 pts) 4. A matrix A is said to be idempotent if $A^{m}=I$ for some $m \geq 1$. Show that a symmetric real matrix is idempotent iff $A^{2}=1$.
(10 pts) 5. Let $<,>$ be an inner product of a finite dimensional complex vector space V, and A a self-adjoint operator of V, Show that $\langle A v, v\rangle$ is always a real number for any $v \in V$.
$(10 \mathrm{pts}) \quad$ 6. Find the area of the convex pentagon in \mathbb{R}^{2} with vertices $(0,0),(6,0),(8,3),(5,6),(0,4)$.
(10 pts) 7. Let \mathbb{P}_{3} be the vector space of all real polynomials of degree 3 or less. Let the inner product $(f \mid g)$ be defined as $\int_{0}^{1} f g d x$. Find an orthonormal basis of \mathbb{P}_{3}.
8.
(10 pts) (a): Find the Jordan canonical form J of the following matrix over complex numbers

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(10 pts) (b): Find a matrix M such that $J=M^{-1} A M$.

