MATH 554 August 2008

Instructions: Give a complete solution to each question. For problems with multiple parts you may assume the result of the previous parts to solve the subsequent parts. Begin each problem on a new sheet of paper. Be sure your name is on every sheet of your solutions

Notation: The following are standard for this examination. If R is a ring, $M_n(R)$ is the collection of $n \times n$ matrices with R-entries, and R[x] is the ring of plynomials with *R*-coefficients. The symbols $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} denote the integers, the field of rational numbers, the field of real numbers, and the field of complex numbers, respectively. The symbol I_n denotes the $n \times n$ identity matrix, and I_V is the identity transformation of a vector space V.

1. (10 points) Let R be a principal ideal domain. A finitely generated R-module M is said to be **indecomposable** if no submodule of M is a direct summand of M, i.e., it is impossible to find proper submodules M_1, M_2 of M so that $M = M_1 \oplus M_2$. Determine all indecomposable R-modules.

2. Let R be a commutative ring with identity 1_R .

(a) (6 points) Suppose
$$A \in M_n(R)$$
 and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ is a solution to $A\mathbf{x} = \mathbf{0}$.

Show that, for each i, $b_i \det A = 0$.

(b) (3 points) Use (a) to show that if R is an integral domain and $A \in M_n(R)$ is singular (i.e., the kernel of A is a non-zero submodule of \mathbb{R}^n) then det A = 0.

3. (10 points) Suppose $A \in M_9(\mathbb{C})$, and $I = I_9$ satisfy the following conditions:

- i) $\operatorname{rank}(A+2I) = 8$, and $\operatorname{rank}(A+2I)^k = 7$, for $k \ge 2$;
- ii) $\operatorname{rank}(A (2i)I) = 7$, and $\operatorname{rank}(A (2i)I)^k = 6$, for $k \ge 2$; iii) $\operatorname{rank}(A 3I) = 8$, $\operatorname{rank}(A 3I)^2 = 7$, $\operatorname{rank}(A 3I)^3 = 6$, and $\operatorname{rank}(A 3I)^k = 6$. 5, for k > 4.

Find the Jordan Canonical form of A.

4. Let V be a real or complex inner product space, with given inner product (,).

- (a) (4 points)Prove that any collection of non-zero orthogonal vectors in V is linearly independent.
- (b) (5 points) Let $\{v_1, v_2, \ldots, v_n\}$ be an orthogonal subset of V. Prove that, for any $w \in V$,

$$||w||^2 \ge \sum_{i=1}^n \frac{|(w, v_i)|^2}{||v_i||^2}.$$

5. (8 points) Let G be a group (not necessarily abelian). Suppose $\rho : G \to GL_n(\mathbb{C})$ is a homomorphism, i.e., $\rho(g) : \mathbb{C}^n \to \mathbb{C}^n$ is linear for each $g \in G$, and $\rho(g_1g_2) = \rho(g_1)\rho(g_2)$, for all $g_1, g_2 \in G$. Finally, suppose the only G-invariant subspaces are $\{0\}$ and \mathbb{C}^n , i.e., if W is a subspace of \mathbb{C}^n and $\rho(g)W \subset W$ for all $g \in G$, then $W = \{0\}$ or \mathbb{C}^n . Show that if $A \in M_n(\mathbb{C})$ satisfies $A\rho(g) = \rho(g)A$ for all $g \in G$, then $A = cI_n$, for some $c \in \mathbb{C}$.

Hint: Find some *G*-invariant subspaces associated with *A*.

6. (12 points) Find the characteristic polynomial, minimal polynomial, and rational canonical form of the matrix

$$\begin{pmatrix} 0 & 2 & 2 & 2\\ 2 & 0 & 2 & 2\\ 2 & 2 & 0 & 2\\ 2 & 2 & 2 & 0 \end{pmatrix} \in M_4(\mathbb{Q}).$$

7. (3 points) Suppose T is a linear operator on \mathbb{R}^n , $f \in \mathbb{R}[x]$ and α is a (real) eigenvalue of f(T). Is there a (real) eigenvalue β of T so that $f(\beta) = \alpha$? Give a proof or counterexample.

8. (5 points each) Let F be a field with p elements.

- (a) Determine the order of the group $GL_3(\mathbb{F})$ of 3×3 invertible matrices with entries in F.
- (b) Determine the order of the group $SL_3(F)$, the elements of $GL_3(F)$ of determinant 1.

9. (4 points each) Let V be a finite dimensional complex inner product space, and suppose T is a normal operator on V.

- (a) Prove T is self adjoint if and only if all eigenvalues of T are real.
- (b) Prove T is unitary if and only if all eigenvalues of T have norm 1.

10. (5 points each) Let $S^1 = \{z \in \mathbb{C} | |z| = 1\}$. Note that S^1 is an abelian group with the operation of complex multiplication.

- (a) Is S^1 finitely generated? Why or why not?
- (b) Let $\chi : S^1 \to GL_1(\mathbb{C}) \simeq \mathbb{C} \setminus \{0\}$. be a Z-linear map (i.e., a group homomorphism). Suppose z_1, z_2, \ldots, z_k are elements of S^1 of finite orders m_1, m_2, \ldots, m_k , and further suppose $gcd(m_i, m_j) = 1$, for $i \neq j$. Show there is a positive integer n so that $\chi(z_i) = z_i^n$ for $i = 1, 2, \ldots, k$.

11. (5 points) Let F be a field and t_0, t_1, \ldots, t_n be distinct elements of F. Given elements $a_0, a_1, \ldots, a_n \in F$, show there is a polynomial $f \in F[x]$, with deg $f \leq n$, so that $f(t_i) = a_i$, for $i = 0, 1, \ldots, n$.

12. (6 points) Let F be a field, $A \in M_n(F)$, and let $T_A : M_n(F) \to M_n(F)$ be given by $T_A(B) = AB$. Show the minimal polynomial of T_A is the minimal polynomial of A. Are the characteristic polynomials of A and T_A equal as well?