MATH 554
August 2008

Instructions: Give a complete solution to each question. For problems with multiple parts you may assume the result of the previous parts to solve the subsequent parts. Begin each problem on a new sheet of paper. Be sure your name is on every sheet of your solutions

Notation: The following are standard for this examination. If R is a ring, $M_{n}(R)$ is the collection of $n \times n$ matrices with R-entries, and $R[x]$ is the ring of plynomials with R-coefficients. The symbols $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} denote the integers, the field of rational numbers, the field of real numbers, and the field of complex numbers, respectively. The symbol I_{n} denotes the $n \times n$ identity matrix, and I_{V} is the identity transformation of a vector space V.

1. (10 points) Let R be a principal ideal domain. A finitely generated R-module M is said to be indecomposable if no submodule of M is a direct summand of M, i.e., it is impossible to find proper submodules M_{1}, M_{2} of M so that $M=M_{1} \oplus M_{2}$. Determine all indecomposable R-modules.
2. Let R be a commutative ring with identity 1_{R}.
(a) (6 points) Suppose $A \in M_{n}(R)$ and $\mathbf{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right)$ is a solution to $A \mathbf{x}=\mathbf{0}$. Show that, for each $i, b_{i} \operatorname{det} A=0$.
(b) (3 points) Use (a) to show that if R is an integral domain and $A \in M_{n}(R)$ is singular (i.e., the kernel of A is a non-zero submodule of R^{n}) then $\operatorname{det} A=0$.
3. (10 points) Suppose $A \in M_{9}(\mathbb{C})$, and $I=I_{9}$ satisfy the following conditions:
i) $\operatorname{rank}(A+2 I)=8$, and $\operatorname{rank}(A+2 I)^{k}=7$, for $k \geq 2$;
ii) $\operatorname{rank}(A-(2 i) I)=7$, and $\operatorname{rank}(A-(2 i) I)^{k}=6$, for $k \geq 2$;
iii) $\operatorname{rank}(A-3 I)=8, \operatorname{rank}(A-3 I)^{2}=7, \operatorname{rank}(A-3 I)^{3}=6$, and $\operatorname{rank}(A-3 I)^{k}=$ 5 , for $k \geq 4$.
Find the Jordan Canonical form of A.
4. Let V be a real or complex inner product space, with given inner product (,).
(a) (4 points)Prove that any collection of non-zero orthogonal vectors in V is linearly independent.
(b) (5 points) Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an orthogonal subset of V. Prove that, for any $w \in V$,

$$
\|w\|^{2} \geq \sum_{i=1}^{n} \frac{\left|\left(w, v_{i}\right)\right|^{2}}{\left\|v_{i}\right\|^{2}}
$$

5. (8 points) Let G be a group (not necessarily abelian). Suppose $\rho: G \rightarrow G L_{n}(\mathbb{C})$ is a homomorphism, i.e., $\rho(g): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is linear for each $g \in G$, and $\rho\left(g_{1} g_{2}\right)=$ $\rho\left(g_{1}\right) \rho\left(g_{2}\right)$, for all $g_{1}, g_{2} \in G$. Finally, suppose the only G-invariant subspaces are $\{0\}$ and \mathbb{C}^{n}, i.e., if W is a subspace of \mathbb{C}^{n} and $\rho(g) W \subset W$ for all $g \in G$, then $W=\{0\}$ or \mathbb{C}^{n}. Show that if $A \in M_{n}(\mathbb{C})$ satisfies $A \rho(g)=\rho(g) A$ for all $g \in G$, then $A=c I_{n}$, for some $c \in \mathbb{C}$.
Hint: Find some G-invariant subspaces associated with A.
6. (12 points) Find the characteristic polynomial, minimal polynomial, and rational canonical form of the matrix

$$
\left(\begin{array}{llll}
0 & 2 & 2 & 2 \\
2 & 0 & 2 & 2 \\
2 & 2 & 0 & 2 \\
2 & 2 & 2 & 0
\end{array}\right) \in M_{4}(\mathbb{Q}) .
$$

7. (3 points) Suppose T is a linear operator on $\mathbb{R}^{n}, f \in \mathbb{R}[x]$ and α is a (real) eigenvalue of $f(T)$. Is there a (real) eigenvalue β of T so that $f(\beta)=\alpha$? Give a proof or counterexample.
8. (5 points each) Let F be a field with p elements.
(a) Determine the order of the group $G L_{3}(\mathbb{F})$ of 3×3 invertible matrices with entries in F.
(b) Determine the order of the group $S L_{3}(F)$, the elements of $G L_{3}(F)$ of determinant 1.
9. (4 points each) Let V be a finite dimensional complex inner product space, and suppose T is a normal operator on V.
(a) Prove T is self adjoint if and only if all eigenvalues of T are real.
(b) Prove T is unitary if and only if all eigenvalues of T have norm 1.
10. (5 points each) Let $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$. Note that S^{1} is an abelian group with the operation of complex multiplication.
(a) Is S^{1} finitely generated? Why or why not?
(b) Let $\chi: S^{1} \rightarrow G L_{1}(\mathbb{C}) \simeq \mathbb{C} \backslash\{0\}$. be a \mathbb{Z}-linear map (i.e., a group homomorphism). Suppose $z_{1}, z_{2}, \ldots, z_{k}$ are elements of S^{1} of finite orders $m_{1}, m_{2}, \ldots, m_{k}$, and further suppose $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j$. Show there is a positive integer n so that $\chi\left(z_{i}\right)=z_{i}^{n}$ for $i=1,2, \ldots, k$.
11. (5 points) Let F be a field and $t_{0}, t_{1}, \ldots, t_{n}$ be distinct elements of F. Given elements $a_{0}, a_{1}, \ldots, a_{n} \in F$, show there is a polynomial $f \in F[x]$, with $\operatorname{deg} f \leq n$, so that $f\left(t_{i}\right)=a_{i}$, for $i=0,1, \ldots, n$.
12. (6 points) Let F be a field, $A \in M_{n}(F)$, and let $T_{A}: M_{n}(F) \rightarrow M_{n}(F)$ be given by $T_{A}(B)=A B$. Show the minimal polynomial of T_{A} is the minimal polynomial of A. Are the characteristic polynomials of A and T_{A} equal as well?
