(12) 1. Let F be a field, let n be a positive integer, and let $W=F^{n \times n}$ denote the vector space of $n \times n$ matrices with entries in F.
(i) Let W_{0} denote the subspace of W spanned by the matrices C of the form $C=A B-B A$. What is $\operatorname{dim} W_{0} ?$
(ii) For $A \in F^{n \times n}$, define the adjoint matrix adj $A \in F^{n \times n}$.
(iii) If $A \in \mathbb{R}^{3 \times 3}$ and $\operatorname{det} A=2$, what is $\operatorname{det} \operatorname{adj} A$?
(10) 2. Let \mathbb{Q} denote the field of rational numbers. Give an example of a linear operator $T: \mathbb{Q}^{3} \rightarrow \mathbb{Q}^{3}$ having the property that the only T-invariant subspaces are the whole space and the zero subspace. Explain why your example has this property.
(20) 3. Let A and B in $\mathbb{Q}^{n \times n}$ be $n \times n$ matrices and let $I \in \mathbb{Q}^{n \times n}$ denote the identity matrix.
(i) State true or false and justify: If A and B are similar over an extension field F of \mathbb{Q}, then A and B are similar over \mathbb{Q}.
(ii) Let M and N be $n \times n$ matrices over the polynomial ring $\mathbb{Q}[x]$. Define " M and N are equivalent over $\mathbb{Q}[x]$ ".
(iii) State true or false and justify: Every matrix $M \in \mathbb{Q}[x]^{n \times n}$ is equivalent to a diagonal matrix.
(iv) State true or false and justify: If $\operatorname{det}(x I-A)=\operatorname{det}(x I-B)$, then $x I-A$ and $x I-B$ are equivalent.
(v) State true or false and justify: If A and B are similar over \mathbb{Q}, then $x I-A$ and $x I-B$ are equivalent in $\mathbb{Q}[x]$.
(14) 4. Let F be a field, let m and n be positive integers and let $A \in F^{m \times n}$ be an $m \times n$ matrix.
(i) Define "row space of A ".
(ii) Define "column space of A ".
(iii) Prove that the dimension of the row space of A is equal to the dimension of the column space of A.
(16) \quad 5. Let D be a principal ideal domain and let V and W denote free D-modules of rank 5 and 4, respectively. Assume that $\phi: V \rightarrow W$ is a D-module homomorphism, and that $\mathbf{B}=\left\{v_{1}, \ldots, v_{5}\right\}$ is an ordered basis of V and $\mathbf{B}^{\prime}=\left\{w_{1}, \ldots, w_{4}\right\}$ is an ordered basis of W.
(i) Define what is meant by the coordinate vector of $v \in V$ with respect to the basis B?
(ii) Describe how to obtain a matrix $A \in D^{4 \times 5}$ so that left multiplication by A on D^{5} represents $\phi: V \rightarrow W$ with respect to \mathbf{B} and \mathbf{B}^{\prime}.
(iii) How does the matrix A change if we change the basis \mathbf{B} by replacing v_{2} by $v_{2}+a v_{1}$ for some $a \in D$?
(iv) How does the matrix A change if we change the basis \mathbf{B}^{\prime} by replacing w_{2} by $w_{2}+a w_{1}$ for some $a \in D$?
(12) 6. Let \mathcal{F} be a subspace of $\mathbb{C}^{4 \times 4}$ of commuting matrices.
(i) Demonstrate with an example that it is possible for there to exist in \mathcal{F} five elements that are linearly independent over \mathbb{C}.
(ii) If there exists $A \in \mathcal{F}$ having at least two distinct characteristic values, prove that $\operatorname{dim} \mathcal{F} \leq 4$.
(20) 7. Let V be a finite-dimensional vector space over the field F and let $T: V \rightarrow V$ be a linear operator. Give V the structure of a module over the polynomial ring $F[x]$ by defining $x \alpha=T(\alpha)$ for each $\alpha \in V$.
(i) If $\left\{v_{1}, \cdots, v_{n}\right\}$ are generators for V as an $F[x]$-module, what does it mean for $A \in F[x]^{m \times n}$ to be a relation matrix for V with respect to $\left\{v_{1}, \ldots, v_{n}\right\}$?
(ii) If $F=\mathbb{C}$ and $A=\left[\begin{array}{ccc}x^{2}(x-1) & 0 & 0 \\ 0 & x(x-1)(x-2) & 0 \\ 0 & 0 & x^{2}(x-2)\end{array}\right]$ is a relation matrix for V with respect to $\left\{v_{1}, v_{2}, v_{3}\right\}$, list the invariant factors of V.
(iii) With assumptions as in part (ii), list the elementary divisors of V and describe the direct sum decomposition of V given by the primary decomposition theorem.
(iv) With assumptions as in part (ii), write the Jordan form of the operator T.
(8) 8. Let V be a five-dimensional vector space over the field F and let $T: V \rightarrow V$ be a linear operator such that $\operatorname{rank} T=1$. List all polynomials $p(x) \in F[x]$ that are possibly the minimal polynomial of T. Explain.
(8) 9. Let V be an abelian group with generators $\left\{v_{1}, v_{2}, v_{3}\right\}$ that has the matrix $\left[\begin{array}{ccc}2 & 0 & 6 \\ 4 & 8 & 0\end{array}\right]$ as a relation matrix. Express V as a direct sum of cyclic groups.
(12) 10. Let V be an abelian group generated by elements a, b, c. Assume that $2 a=6 b, 2 b=6 c, 2 c=6 a$, and that these three relations generate all the relations on a, b, c.
(i) Write down a relation matrix for V.
(ii) Find generators x, y, z for V such that $V=\langle x\rangle \oplus\langle y\rangle \oplus\langle z\rangle$ is the direct sum of cyclic subgroups generated by x, y, z. Express your generators x, y, z in terms of a, b, c. What is the order of V ?
(8) 11. List up to isomorphism all abelian groups of order 16.
(6) 12. Let F be a field.
(i) What is the dimension of the vector space of all 3-linear functions $D: F^{3 \times 3} \rightarrow F$?
(ii) What is the dimension of the vector space of all 3-linear alternating functions $D: F^{3 \times 3} \rightarrow F ?$
(12) 13. Prove that a linear operator $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ has a cyclic vector if and only if every linear operator $S: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ that commutes with T is a polynomial in T.
(16)
14. Assume that V is a finite-dimensional vector space over an infinite field F and $T: V \rightarrow V$ is a linear operator. Give to V the structure of a module over the polynomial ring $F[x]$ by defining $x \alpha=T(\alpha)$ for each $\alpha \in V$.
(i) Outline a proof that V is a direct sum of cyclic $F[x]$-modules.
(ii) In terms of the expression for V as a direct sum of cyclic $F[x]$-modules, what are necessary and sufficient conditions in order that V have only finitely many T-invariant F-subspaces? Explain.
(14) 15. Let M be a module over the integral domain D. Recall that a submodule N of M is said to be pure if the following holds: whenever $y \in N$ and $a \in D$ are such that there exists $x \in M$ with $a x=y$, then there exists $z \in N$ with $a z=y$.
(i) If N is a direct summand of M, prove that N is pure in M
(ii) For $x \in M$, let $\bar{x}=x+N$ denote the coset representing the image of x in the quotient module M / N. If N is a pure submodule of M and ann \bar{x} $=\{a \in D \mid a \bar{x}=0\}$ is a principal ideal (d) of D, prove that there exists $x^{\prime} \in M$ such that $x+N=x^{\prime}+N$ and ann $x^{\prime}=\left\{a \in D \mid a x^{\prime}=0\right\}$ is the principal ideal (d).
(12) 16 Let M be a finitely generated module over the polynomial ring $F[x]$, where F is a field, and let N be a pure submodule of M. Prove that there exists a submodule L of M such that $N+L=M$ and $N \cap L=0$.

