Qualifying Examination
 August 2007

Math 554 - Professor Wang

(Choose eight problems. Each: 10 points, total 80 points)

1. Let V be the span of all projections E in $M_{n n}(F)$ with $\operatorname{rank}(E)=2$ and $n \geq 3$. Assume that F is a field of characteristic 2. Compute the dimension of V.
2. Let V be a finite dimensional vector space over an uncountable field F and V_{i}, $i=1, \ldots, n, \ldots$ a sequence of subspaces of V. Show that if $V=U_{i=1}^{\infty} V_{i}$, then one of V_{i} is V.
3. Let ℓ be a positive integer and p a prime number, $A \in M_{n n}(\mathbb{Q})$ and $f(x)=$ $x^{\ell}-p x^{\ell-1}-p x+p$. Assume that $f(A)=0$ and $\operatorname{tr}(A)=m p$. Compute $\operatorname{tr}\left(A^{-1}\right)$.
4. Let $a_{i j}=i^{2}+i j+j^{2}$ and $f_{i}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n}, i=1, \ldots, n$. Determine the dimension of the span of f_{i}.
5. Let A, B and C be $n \times n$ matrices over a commutative ring R with identity. If $A B=B A$, then

$$
\operatorname{det}(A-B C)=\operatorname{det}(A-C B)
$$

6. Let A be a nilpotent $n \times n$ matrix and $f(x)=a_{0}+a_{1} x+\cdots+a_{\ell} x^{\ell}$ with $a_{1} \neq 0$. Show that $f(A)$ and $a_{0} I+A$ are similar.
7. Let A be an operator of a finite dimensional vector space over \mathbb{C}. Assume that A has minimal polynomial $x^{2}(x+1)^{2}$ and characteristic polynomial $x^{4}(x+1)^{4}$. Determine all possible similar classes of A.
8. Let V be an n-dimensional subspace of the space of polynomials over \mathbb{C}. Show that there exist $f_{1}, \ldots, f_{n} \in V$ and an integer ℓ such that

$$
f_{i}(\ell+j)=\delta_{i j}, i, j=1, \ldots, n
$$

9. Let $A_{i j} \in M_{\ell \times \ell}(F) \quad, i, j=1, \ldots, m$ be matrices and $A=\left[A_{i j}\right]$ the $n \times n$ matrix with $n=\ell m$ and the given partition. Assume that A is invertible and $A_{i j}$ commute one another. Show that if $A^{-1}=\left[B_{i j}\right]$ with same partition, then $B_{i j}$ commute one another.
10. Let $A_{1}, \ldots, A_{k} \in M_{n n}(\mathbb{C})$ such that

$$
A_{i}^{2}=A_{i}(i=1, \ldots, k) \quad \text { and } \quad A_{1}+\cdots+A_{k}=I
$$

For $a_{1}, \ldots a_{n} \in \mathbb{C}$, give a simple expression for $\operatorname{det}\left(\sum_{i=1}^{k} a_{i} A_{i}\right)$.

11 Let $A \in M_{n n}(F)$ with $A^{T}=-A$. If characteristic of $F \neq 2$ and F is infinite, there exist $X, Y \in M_{n n}(F)$ such that

$$
X^{T}=X, \quad Y^{T}=Y \quad \text { and } \quad A=[X, Y]=X Y-Y X
$$

12 Let N_{1}, N_{2} be nilpotent operators of a finite dimensional vector space. Assume that N_{1} is cyclic and $N_{1} N_{2}=N_{2} N_{1}$. Show that N_{1} and $N_{1}+N_{1} N_{2}$ are similar.

