QUALIFYING EXAMINATION
 JANUARY 2006
 MATH 554 - Prof. J. Wang

1. Let $E_{i}, i=1, \cdots, \ell$ be projections of a finite dimensional vector space V and $\alpha_{1}, \cdots, \alpha_{\ell}$ scalars. If E_{i} have the same range, then $A=\sum_{i=1}^{\ell} \alpha_{i} E_{i}$ satisfies $A^{2}=\left(\sum_{i=1}^{\ell} \alpha_{i}\right) A$.
2. Let F be a field and $S=\left\{E \in M_{n n}(F) \mid E^{2}=E\right\}$. Show that the span of S is $M_{n n}(F)$.
3. Let $A=\left[A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right]$ be a 4×5 matrix. Assume that the general solution for $A X=0$ is given by

$$
X=\left[\begin{array}{c}
s \\
2 s-t \\
t \\
t+s \\
2 t
\end{array}\right]
$$

(a) Find a maximal independent subset B of $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right)$.
(b) Express $A_{1}+A_{2}+A_{3}+A_{4}+A_{5}$ as a linear combination of B.
4. Let K be a field and $D: M_{n n}(K) \rightarrow K$ be a function such that $D(A B)=D(A) D(B)$ and $D(I) \neq D(0)$. Show that if $\operatorname{rank}(A)<n$, then $D(A)=0$.
5. Let R be a commutative ring with identity, $A \in M_{m n}(R), B \in M_{n m}(R)$ and I the identity matrix.
(a) $\left|I_{m}-A B\right|=\left|I_{n}-B A\right|$.
(b) If R is a field and $n \leq m$, show that the characteristic polynomials $p_{A B}(x)$ and $p_{B A}(x)$ of $A B$ and $B A$ respectively satisfy $p_{A B}(x)=x^{m-n} p_{B A}(x)$.
6. Let $A=\left[a_{i j}\right]$ be the $(n+1) \times(n+1)$ matrix with $a_{i j}=(i+j-2)$! and $0!=1$. (Hint: $A=L D L^{T}$)
(a) A is positive definite.
(b) $\operatorname{det} A=(0!1!\cdots n!)^{2}$.
(c) $(n!)^{2} A^{-1} \in M_{(n+1)(n+1)}(\mathbb{Z})$.
7. Let A be an $n \times n$ matrix over \mathbb{C} and p be a prime number. Suppose that $I \neq A$ and $A^{p}=I$ and $\operatorname{tr}(A)=$ positive integer ℓ. Show that $n=\ell+s p$ with s a positive integer.

