QUALIFYING EXAMINATION JANUARY 2006 MATH 554 - Prof. J. Wang

1. Let E_i , $i = 1, \dots, \ell$ be projections of a finite dimensional vector space V and $\alpha_1, \dots, \alpha_\ell$ scalars. If E_i have the same range, then $A = \sum_{i=1}^{\ell} \alpha_i E_i$ satisfies

$$A^2 = \left(\sum_{i=1}^{\ell} \alpha_i\right) A.$$

- 2. Let F be a field and $S = \{E \in M_{nn}(F) \mid E^2 = E\}$. Show that the span of S is $M_{nn}(F)$.
- 3. Let $A = [A_1, A_2, A_3, A_4, A_5]$ be a 4×5 matrix. Assume that the general solution for AX = 0 is given by

$$X = \begin{bmatrix} s \\ 2s - t \\ t \\ t + s \\ 2t \end{bmatrix}.$$

- (a) Find a maximal independent subset B of $\{A_1, A_2, A_3, A_4, A_5\}$.
- (b) Express $A_1 + A_2 + A_3 + A_4 + A_5$ as a linear combination of B.
- 4. Let K be a field and $D: M_{nn}(K) \to K$ be a function such that D(AB) = D(A)D(B) and $D(I) \neq D(0)$. Show that if rank(A) < n, then D(A) = 0.
- 5. Let R be a commutative ring with identity, $A \in M_{mn}(R)$, $B \in M_{nm}(R)$ and I the identity matrix.
 - (a) $|I_m AB| = |I_n BA|.$
 - (b) If R is a field and $n \leq m$, show that the characteristic polynomials $p_{AB}(x)$ and $p_{BA}(x)$ of AB and BA respectively satisfy $p_{AB}(x) = x^{m-n} p_{BA}(x)$.
- 6. Let $A = [a_{ij}]$ be the $(n+1) \times (n+1)$ matrix with $a_{ij} = (i+j-2)!$ and 0! = 1. (Hint: $A = LDL^T$)
 - (a) A is positive definite.
 - (b) det $A = (0!1! \cdots n!)^2$.
 - (c) $(n!)^2 A^{-1} \in M_{(n+1)(n+1)}(\mathbb{Z}).$

7. Let A be an $n \times n$ matrix over \mathbb{C} and p be a prime number. Suppose that $I \neq A$ and $A^p = I$ and $tr(A) = positive integer <math>\ell$. Show that $n = \ell + sp$ with s a positive integer.