
QUALIFYING EXAMINATION
MATH 554, August 2006

Prof. J-K Yu and Prof. J. Wang

There are 6 problems with a total of 12 parts. Each part is worth 10 points.
You can do 4(b) by assuming 4(a), and so on.

1. (a) Let pA(t) denote the characteristic polynomial of an n×n matrix A, i.e. pA(t) = det(tIn−A).
Let A be a complex n× n matrix and f(T ) be a polynomial in T with complex coefficients. Show
that pf(A)(t) is determined by f(T ) and pA(t).

(b) Now suppose that A is 3 × 3 satisfying A3 + A + I3 = 0 with coefficients in Q. Find
the characteristic polynomial of A2 + I3. You may use the fact that the polynomial t3 + t + 1 is
irreducible over Q.

2. (a) Let A be an n × n invertible matrix over C and m ≥ 1 an integer. Show that if Am is
diagonalizable, then so is A. (Hint. Consider a normal form).

(b) Show that (a) fails if C is replaced by a field of characteristic p > 0.

3. Let A be a real anti-symmetric square matrix, i.e. At = −A. Show that the eigenvalues of A
are purely imaginary (i.e. of the form it with t ∈ R). (Hint. Recall the algebraic proof of the fact
that symmetric real matrices have real eigenvalues).

4. (a) Let A be an n × n complex matrix and V the vector space of n × n complex symmetric
matrices, so that dim V = n(n + 1)/2. Let L = LA : V → V be the linear map defined by
L(X) = AXAt. Suppose that A is diagonalizable with eigenvalues λ1, . . . , λn. Show that the
eigenvalues of L are {λiλj : 1 ≤ i ≤ j ≤ n}.

(b) Show that the above remains true for any A, diagonalizable or not. (Hint. First Approach:
Show that if A = S +N is the Jordan decomposition, then LS is the semisimple part of LA. Second
approach: Show that it is enough to consider an upper triangular A, and choose a suitable basis
for V . There are other approaches).

5. (a) Let Pn be the (n + 1)-dimensional vector space of homogeneous real polynomials in x, y of

degree n. Fix A =
(

a b
c d

)
and define L : Pn → Pn by L(f(x, y)) = f(ax + by, cx + dy). Show that

L is a linear map.

(b) Now let A =
(

1 0
1 1

)
and consider the linear map N : Pn → Pn defined by N(f) = L(f)−f .

Find N(yn), N2(xyn−1), . . ., Nn+1(xn).

(c) Find the Jordan form of N . (Hint. (b) tells you what Nn+1 is. Now it remains to determine
what Nn is (or rather is not)).

6. (a) Let A be an n× n real matrix. Let v1, . . . , vn ∈ Rn be the column vectors of A. Show that

|det(A)| ≤ ||v1|| · ||v2|| · · · ||vn||,

where ||v|| is the standard norm of v ∈ Rn. (Hint. Write A = QT with Q orthogonal and T upper
triangular).

(b) Let B be a positive symmetric n × n real matrix with diagonal entries d1, . . . , dn (i.e. if
B = (bij) then di = bii). Show that

det(B) ≤ d1 · d2 · · · dn.
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1. (a) Let pA(t) denote the characteristic polynomial of an n×n matrix A, i.e. pA(t) = det(tIn−A).
Let A be a complex n× n matrix and f(T ) be a polynomial in T with complex coefficients. Show
that pf(A)(t) is determined by f(T ) and pA(t).

(b) Now suppose that A is 3 × 3 satisfying A3 + A + I3 = 0 with coefficients in Q. Find
the characteristic polynomial of A2 + I3. You may use the fact that the polynomial t3 + t + 1 is
irreducible over Q.

Solution. (a) It is easy to see that if A is similar to A′ then f(A) is similar to f(A′). Therefore,
we may and do replace A by a matrix similar to A and hence assume that A is upper triangular,
with diagonal entries λ1, . . . , λn. It follows that f(A) is also upper triangular with diagonal entries
f(λ1), . . . , f(λn). Therefore,

pf(A)(t) =
∏

(t− f(λi)) if pA(t) =
∏

(t− λi).

(b) Since t3 + t + 1 is irreducible over Q, it is the characteristic polynomial of A, and A is
determined by this condition up to similarity. We may and do assume that

A =

 0 1 0
0 0 1
−1 −1 0

 (rational normal form).

A simple calculation then gives

A2 + I3 = A =

 1 0 1
−1 0 0
0 −1 0

 and pA2+I(t) = t3 − t2 − 1.

2. (a) Let A be an n × n invertible matrix over C and m ≥ 1 an integer. Show that if Am is
diagonalizable, then so is A. (Hint. Consider a normal form).

(b) Show that (a) fails if C is replaced by a field of characteristic p > 0.

Solution. (a) The question is unchanged if we replace A by a matrix similar to A. Therefore, we
may and do assume that A is in its Jordan form. We may further assume that A consists of only
one Jordan block.

Write A = λI + N with λ 6= 0 being the eigenvalue of A, and N nilpotent. Then Am =
λmI + mλm−1N +

(
m
2

)
N2 + · · ·. Since I, N, . . . , Nn−1 are linearly independent in Mn×n(C), it is

clear that Am is not diagonalizable unless n = 1, i.e. unless A itself is diagonalizable.

(b) Take A = I + N with N a non-zero nilpotent matrix. Then Ap = I is diagonalizable, but
A is not.

3. Let A be a real anti-symmetric square matrix, i.e. At = −A. Show that the eigenvalues of A
are purely imaginary (i.e. of the form it with t ∈ R). (Hint. Recall the algebraic proof of the fact
that symmetric real matrices have real eigenvalues).



Solution. Suppose that λ is an eigenvalue of A with eigenvector v 6= 0. Then

λ(v, v) = (Av, v) = (v,Atv) = (v,−Av) = −λ̄(v, v),

where (−,−) is the standard hermitian form. This forces λ = −λ̄ to be purely imaginary.

4. (a) Let A be an n × n complex matrix and V the vector space of n × n complex symmetric
matrices, so that dim V = n(n+1)/2. Let L : V → V be the linear map defined by L(X) = AXAt.
Suppose that A is diagonalizable with eigenvalues λ1, . . . , λn. Show that the eigenvalues of L are
{λiλj : 1 ≤ i ≤ j ≤ n}.

(b) Show that the above remains true for any A, diagonalizable or not. (Hint. First Approach:
Show that if A = S +N is the Jordan decomposition, then LS is the semisimple part of LA. Second
approach: Show that it is enough to consider an upper triangular A, and choose a suitable basis
for V . There are other approaches).

Solution. (a) Let v1, . . . , vn be an eigenbasis of A with corresponding eigenvalues λ1, . . . , λn. It is
easy to see (1) {viv

t
j}i,j forms a basis of Mn×n(C); (2) {viv

t
j + vjv

t
i ∈ V is an eigenvector of L with

eigenvalue λiλj , for 1 ≤ i ≤ j ≤ n; (3) the eigenvectors in (2) are linearly independent by (1).
It follows that the eigenvectors in (2) is an eigenbasis of L, and hence L is diagonalizable with

the stated eigenvalues.

(b) There are a few standard tricks to do this. It is fairly easy to follow one of the two approaches
given in the hint. Another approach is the following. Let

∏n
i=1(t − λi) =

∑n
i=0(−1)jcjt

n−j so
that the cj ’s are the elementary symmetric polynomials of the λi’s. Write

∏
1≤i≤j≤n(t − λiλj) =∑

dkt
n−k. By the theory of symmetric polynomials,

dk = Pk(c1, . . . , cn)

for some universal polynomial Pk’s with coefficients in C (actually in Z). Now we want to prove
that the characteristic polynomial of L = LA can be expressed in terms of that of A using these
Pk’s. This amounts to a bunch of polynomial identities in n2 variables (which are the entries of
A). By (a), we know that these identities hold on a dense subset of Cn2

. Therefore, they hold
everywhere.

5. (a) Let Pn be the (n + 1)-dimensional vector space of homogeneous real polynomials in x, y of

degree n. Fix A =
(

a b
c d

)
and define L : Pn → Pn by L(f(x, y)) = f(ax + by, cx + dy). Show that

L is a linear map.

(b) Now let A =
(

1 0
1 1

)
and consider the linear map N : Pn → Pn defined by N(f) = L(f)−f .

Find N(yn), N2(xyn−1), . . ., Nn+1(xn).

(c) Find the Jordan form of N . (Hint. (b) tells you what Nn+1 is. Now it remains to determine
what Nn is (or rather is not)).

Solution. (a) is very straightforward. For (b), we compute directly and find N(yn) = N2(xyn−1) =
· · · = Nn+1(xn) = 0.

(c) By (b), we have Nn+1 = 0. Inductively, we can also establish N i(xiyn−i) 6= 0 for i = 0, . . . , n.
Therefore, Nn 6= 0. It follows that N is nilpotent with a single (n + 1)× (n + 1) Jordan block.



6. (a) Let A be an n× n real matrix. Let v1, . . . , vn ∈ Rn be the column vectors of A. Show that

|det(A)| ≤ ||v1|| · ||v2|| · · · ||vn||,

where ||v|| is the standard norm of v ∈ Rn. (Hint. Write A = QT with Q orthogonal and T upper
triangular).

(b) Let B be a positive symmetric n × n real matrix with diagonal entries d1, . . . , dn (i.e. if
B = (bij) then di = bii). Show that

det(B) ≤ d1 · d2 · · · dn.

Solution. (a) Notice that this has a very intuitive interpretation via volumes, which easily leads to
the following formal proof. Use induction on n. The case of n = 1 is trivial. Now notice that we
may replace A by UA without changing the problem, where U is an orthogonal matrix. Thus we
may assume that v1 is of the form c · e1, e1 = (1, 0, . . . , 0)t.

Let A′ be the (n− 1)× (n− 1) submatrix in the lower right corner of A, and let v′2, . . . , v
′
n be

the column vectors of A′. Notice that ||v′j || ≤ ||vj || for j = 2, . . . , n. Now we have

|det(A)| = |c|det(A′) ≤ |c| · ||v′2|| · · · ||v′n|| ≤ ||v1|| · ||v2|| · · · ||vn||

by induction hypothesis. One can also use the hint to reduce directly to the case of an upper
triangular A, for which the statement is obvious (really the same proof).

(b) Since B is positive definite, we can write B = A.At for a suitable n× n matrix A (we may
take A to be symmetric positive definite; but it doesn’t matter here). Now

det(B) = det(A)2 ≤ ||v1||2 · · · ||vn||2 = d1 · · · dn.

Here the vj ’s are the column vectors of A and we are using (a), noticing that dj = ||vj ||2.


