QUALIFYING EXAMINATION
 Math 554
 January 2005 - Prof. Ulrich

1. (12 points)

Without proof give an answer to these questions:
(a) For R a commutative ring and M an R-module, is the R-module $\operatorname{Hom}_{R}(M, R)$ torsion free?
(b) How many isomorphism classes are there of \mathbb{Z}_{20}-modules having exactly 625 elements?
(c) How many isometry classes are there of alternating bilinear forms on a 3-dimensional vector space?
2. (15 points)

Let R be a commutative ring and P an R-module. Prove that the following are equivalent:
(a) For every R-linear map $f: P \rightarrow N$ and every R-epimorphism $\pi: M \rightarrow N$ there exists an R-linear map $g: P \rightarrow M$ with $\pi g=f$.
(b) There exists an R-module Q such that the direct sum $P \oplus Q$ is a free R-module.
3. (15 points)

Let R be an integral domain and F a free R-module with ordered basis $\left\{x_{1}, \ldots, x_{n}\right\}$. Let $M=R u_{1}+\ldots+R u_{n} \subset N=R v_{1}+\ldots+R v_{n}$ be submodules of F with $u_{i}=\sum_{j} a_{i j} x_{j}, v_{i}=\sum_{j} b_{i j} x_{j}\left(a_{i j}, b_{i j} \in R\right)$, and consider the n by n matrices $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$.
(a) Prove that M and N are free R-modules if the $\operatorname{determinant} \operatorname{det} A \neq 0$.
(b) Assume $\operatorname{det} A \neq 0$. Prove that $M=N$ if and only if $\operatorname{det} A$ and $\operatorname{det} B$ are associates.

4. (13 points)

Determine whether the matrices

$$
\left[\begin{array}{rrrr}
2 & -4 & 14 & 10 \\
-2 & 7 & 4 & 5 \\
1 & -2 & 1 & 5
\end{array}\right] \quad \text { and }\left[\begin{array}{rrrr}
-4 & 5 & 0 & 7 \\
-2 & 4 & 12 & 2 \\
-2 & 4 & 6 & 8
\end{array}\right]
$$

are equivalent over \mathbb{Z}. Show your work.
5. (16 points)

Consider the ring $R=\mathbb{Q}[X] /\left(\left(X^{4}+2\right)(X+1)^{2}\right)$ as a $\mathbb{Q}[X]$-module, and let φ be the $\mathbb{Q}[X]$-endomorphism of R defined by $\varphi(a)=X^{2} \cdot a$. Determine the rational canonical form of φ considered as a \mathbb{Q}-linear map.
6. (13 points)

Let R be a principal ideal domain, let M be a finitely generated R-module with a symmetric bilinear form f, and write

$$
M^{\perp}=\{x \in M \mid f(x, y)=0 \text { for every } y \in M\}
$$

for the orthogonal complement of M in M. Show that $M=F \oplus M^{\perp}$ for some free submodule F of M.
7. (16 points)

Let A and B be symmetric n by n matrices with entries in \mathbb{R}. Show that $A B=B A$ if and only if there exists an orthogonal matrix $P \in \mathrm{GL}_{n}(\mathbb{R})$ such that both $P A P^{t}$ and $P B P^{t}$ are diagonal matrices.

