QUALIFYING EXAMINATION Math 554 January 2005 - Prof. Ulrich

1. (12 points)

Without proof give an answer to these questions:

- (a) For R a commutative ring and M an R-module, is the R-module $\operatorname{Hom}_R(M, R)$ torsion free?
- (b) How many isomorphism classes are there of \mathbb{Z}_{20} -modules having exactly 625 elements?
- (c) How many isometry classes are there of alternating bilinear forms on a 3-dimensional vector space?
- **2.** (15 points)

Let R be a commutative ring and P an R-module. Prove that the following are equivalent:

- (a) For every *R*-linear map $f: P \to N$ and every *R*-epimorphism $\pi: M \to N$ there exists an *R*-linear map $g: P \to M$ with $\pi g = f$.
- (b) There exists an *R*-module Q such that the direct sum $P \oplus Q$ is a free *R*-module.
- **3.** (15 points)

Let R be an integral domain and F a free R-module with ordered basis $\{x_1, \ldots, x_n\}$. Let $M = Ru_1 + \ldots + Ru_n \subset N = Rv_1 + \ldots + Rv_n$ be submodules of F with $u_i = \sum_j a_{ij}x_j, v_i = \sum_j b_{ij}x_j \ (a_{ij}, b_{ij} \in R)$, and consider the n by n matrices $A = (a_{ij}), B = (b_{ij})$.

- (a) Prove that M and N are free R-modules if the determinant $\det A \neq 0$.
- (b) Assume det $A \neq 0$. Prove that M = N if and only if det A and det B are associates.

4. (13 points)

Determine whether the matrices

Γ	2	-4	14	10		-4	5	0	7]
	-2	7	4	5	and	-2	4	12	2
L	1	-2	1	5		-2	4	6	8

are equivalent over \mathbb{Z} . Show your work.

5. (16 points)

Consider the ring $R = \mathbb{Q}[X]/((X^4+2)(X+1)^2)$ as a $\mathbb{Q}[X]$ -module, and let φ be the $\mathbb{Q}[X]$ -endomorphism of R defined by $\varphi(a) = X^2 \cdot a$. Determine the rational canonical form of φ considered as a \mathbb{Q} -linear map.

6. (13 points)

Let R be a principal ideal domain, let M be a finitely generated R-module with a symmetric bilinear form f, and write

$$M^{\perp} = \{ x \in M \mid f(x, y) = 0 \text{ for every } y \in M \}$$

for the orthogonal complement of M in M. Show that $M = F \oplus M^{\perp}$ for some free submodule F of M.

7. (16 points)

Let A and B be symmetric n by n matrices with entries in \mathbb{R} . Show that AB = BA if and only if there exists an orthogonal matrix $P \in \operatorname{GL}_n(\mathbb{R})$ such that both PAP^t and PBP^t are diagonal matrices.