QUALIFYING EXAMINATION

AUGUST 2005

MATH 554 - Dr. C. Wilkerson

There are eight problems, each worth 25 points for a total of 200 points.Unless otherwise stated, show all necessary work. All rings are assumed to be commutative rings with a multiplicative identity element.
I. (a) Let A be a finite abelian group of order $9 * 256$. Let $\phi_{n}: A \rightarrow A$ be the group homomorphism that sends $x \rightarrow n x$, for any integer n. The following information is known about $\operatorname{ker}\left(\phi_{n}\right)$

n	$\# \operatorname{ker}\left(\phi_{n}\right)$	$\# \operatorname{ker}\left(\phi_{n}^{2}\right)$	$\# \operatorname{ker}\left(\phi_{n}^{3}\right)$
2	8	64	256
3	3	9	9

Deduce the structure of A as a direct sum of cyclic groups of prime power order. Give the invariant factors for A.
(b) Let V be an 8 dimensional vector space over a field K and let $\psi \in \operatorname{End}_{K}(V)$. Suppose that the kernel of $(\psi-5)^{j}$ has dimension k over K and that the following is known about k : for $j=1$, $k=4$; for $j=2, k=7$, and for $j=3, k=8$. Write down the rational canonical form and Jordan canonical form for ψ.
II. (a) Define the concepts of Euclidean domain, PID, and UFD.
(b) Suppose that R is a Euclidean domain. Prove that R is a PID.
(c) Give an example of a UFD that is not a PID.
III. (a) Give an example of a ring R and a finitely generated module over R that is torsion free, but not free.
(b) Prove that a finitely generated module over a PID that is torsion free is free.
(c) If M is an R-module, show that $\operatorname{Hom}_{R}(M, R)$ is torsion free.
(d) If R is a ring and M a module over R, define $\operatorname{Qtor}(M)=\{m \in M \mid$ there is $\quad r \neq 0 \in$ R such that $r m=0\}$. Give an example to show that if R is not a domain, then $\operatorname{Qtor}(M)$ need not be a submodule of M.
IV. Without proof, give examples of the following:
a) A submodule of a module which is not a direct summand.
b) A symmetric bilinear form on a finite dimensional vector space that is not diagonalizable.
c) A normal matrix over the reals that is not diagonalizable.
d) A matrix over the complex numbers that is not diagonalizable.
V. Let R be a PID and $0 \rightarrow N \rightarrow M \rightarrow Q \rightarrow 0$ an exact sequence of R-modules, where M is finitely generated. Show that the following two statements are equivalent:
a) M is torsion free and the exact sequence is split exact.
b) N and Q are torsion free.
VI. Find the eigenvalues, characteristic polynomial, minimal polynomial, rational canonical form and Jordan canonical form in $\operatorname{Mat}_{4}(\mathbb{C})$ of

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & 1 & -1 \\
-2 & 1 & 0 & -1
\end{array}\right)
$$

VII. Let $(V,<,>)$ be a finite dimensional inner product space over $K=\mathbb{R}$ or \mathbb{C}, and $\phi \in \operatorname{End}_{K}(V)$.
(a) define the adjoint ϕ^{T} of ϕ.
(b) define the normal and self-adjoint properties for such ϕ.
(c) show that $\operatorname{ker}\left(\phi^{T}\right)=\operatorname{im}(\phi)^{\perp}$, and if ϕ is normal, also that $\operatorname{ker}(\phi)=\operatorname{im}(\phi)^{\perp}$.
VIII. Let R be a ring and let A and B be in $\operatorname{Mat}_{n}(R)$ so that

$$
A B=a I_{n}
$$

for some non-zerodivisor $a \in R$. Show that $A B=B A$.

