MATH 554 QUALIFYING EXAM

AUGUST 2004

J. Lipman

• Please begin each question 1–5 on a new sheet.

• IN DOING ANY QUESTION, YOU MAY ASSUME PRECEDING PARTS OF THAT QUESTION, EVEN IF YOU HAVEN'T DONE THEM.

• You may quote without proof any standard fact included in the MA554 syllabus.

1. [10 pts] Let M be the matrix $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (with entries in the rational field \mathbf{Q}).

Find an invertible matrix U such that $U^{-1}MU$ has rational canonical form. <u>Hint</u>. First find the canonical matrix C, then solve MU = UC.

2. [10 pts] A matrix A over C has characteristic polynomial $X^2(X-4)^6$ and minimal polynomial $X(X-4)^3$. Find all possibilities for the geometric multiplicities of each of the eigenvalues of A. The geometric multiplicity of the eigenvalue λ is the dimension of the nullspace of $A - \lambda I$.

3. [10 pts] Notation: Let k be a field, and T an indeterminate. $M_n(k)$ is the ring of $n \times n$ matrices with entries in k; $I_n \in M_n(k)$ is the identity matrix; and k(T) is the field of all quotients of polynomials f(T)/g(T) with $g(T) \neq 0$ (where $f(T)/g(T) = f'(T)/g'(T) \iff$ the polynomials fg' and f'g are equal).

(a) Show: if $B \in M_n(k)$ then $B - TI_n \in M_n(k(T))$ is invertible.

(b) Show: if $A, B \in M_n(k)$ then AB and BA have the same characteristic polynomial.

<u>Hint</u>. Do it first with $B - TI_n$ in place of B.

4. [25 pts] Let E be a finite-dimensional inner product space over \mathbf{C} , $F \subset E$ a subspace, and p orthogonal projection onto F (considered as a linear map from E into itself).

(a) Prove that a linear map $T: E \to E$ commutes with $p \iff F$ is invariant under both T and its adjoint T^* (i.e., $T(F) \subset F$ and $T^*(F) \subset F$).

(b) Prove: If T is normal, then T commutes with $p \iff F$ is T-invariant.

(c) Prove: If T is normal, with spectral decomposition $T = \sum \lambda_i p_i$ ($\lambda_i \in \mathbf{C}$), then T commutes with p if and only if p_i commutes with p for all i.

5. [25 pts] (a) Let V be an inner product space of finite dimension n over C, and let W be an m-dimensional subspace of V. Prove that there exists an orthonormal basis (v_1, v_2, \ldots, v_n) of V such that (v_1, v_2, \ldots, v_m) is a basis of W.

(b) Let M be an $n \times r$ complex matrix of rank m. Prove that there exists a unitary $n \times n$ matrix Q and an upper triangular $n \times r$ matrix R whose bottom n - m rows consist entirely of zeros, such that M = QR.

<u>Definition</u>: $R = (r_{ij})$ is upper triangular if $r_{ij} = 0$ whenever i > j.

(c) For
$$M = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$
 find Q and R as in (b).

<u>Hint</u>: There is an orthonormal basis $\mathbf{v} = (v_1, v_2, \dots, v_n)$ of \mathbf{C}^n whose first *m* members come from applying the Gram-Schmidt process to the columns of *M*. (Why?) Let *Q* be the matrix whose columns are the $v_i \dots$