MATH 554 QUALIFYING EXAM

AUGUST 2004

- Please begin each question $1-5$ on a new sheet.
- In doing any question, you may assume preceding parts of that question, even if you HAVEN'T DONE THEM.
- You may quote without proof any standard fact included in the MA554 syllabus.

1. $[10 \mathrm{pts}]$ Let M be the matrix $\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (with entries in the rational field \mathbf{Q}).

Find an invertible matrix U such that $U^{-1} M U$ has rational canonical form.
Hint. First find the canonical matrix C, then solve $M U=U C$.
2. [10 pts] A matrix A over \mathbf{C} has characteristic polynomial $X^{2}(X-4)^{6}$ and minimal polynomial $X(X-4)^{3}$. Find all possibilities for the geometric multiplicities of each of the eigenvalues of A.

The geometric multiplicity of the eigenvalue λ is the dimension of the nullspace of $A-\lambda I$.
3. [10 pts] Notation: Let k be a field, and T an indeterminate. $M_{n}(k)$ is the ring of $n \times n$ matrices with entries in $k ; I_{n} \in M_{n}(k)$ is the identity matrix; and $k(T)$ is the field of all quotients of polynomials $f(T) / g(T)$ with $g(T) \neq 0$ (where $f(T) / g(T)=f^{\prime}(T) / g^{\prime}(T) \Longleftrightarrow$ the polynomials $f g^{\prime}$ and $f^{\prime} g$ are equal).
(a) Show: if $B \in M_{n}(k)$ then $B-T I_{n} \in M_{n}(k(T))$ is invertible.
(b) Show: if $A, B \in M_{n}(k)$ then $A B$ and $B A$ have the same characteristic polynomial.

Hint. Do it first with $B-T I_{n}$ in place of B.
4. [25 pts] Let E be a finite-dimensional inner product space over $\mathbf{C}, F \subset E$ a subspace, and p orthogonal projection onto F (considered as a linear map from E into itself).
(a) Prove that a linear map $T: E \rightarrow E$ commutes with $p \Longleftrightarrow F$ is invariant under both T and its adjoint T^{*} (i.e., $T(F) \subset F$ and $T^{*}(F) \subset F$).
(b) Prove: If T is normal, then T commutes with $p \Longleftrightarrow F$ is T-invariant.
(c) Prove: If T is normal, with spectral decomposition $T=\sum \lambda_{i} p_{i}\left(\lambda_{i} \in \mathbf{C}\right)$, then T commutes with p if and only if p_{i} commutes with p for all i.
5. [25 pts] (a) Let V be an inner product space of finite dimension n over \mathbf{C}, and let W be an m-dimensional subspace of V. Prove that there exists an orthonormal basis $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of V such that $\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ is a basis of W.
(b) Let M be an $n \times r$ complex matrix of rank m. Prove that there exists a unitary $n \times n$ matrix Q and an upper triangular $n \times r$ matrix R whose bottom $n-m$ rows consist entirely of zeros, such that $M=Q R$.

Definition: $R=\left(r_{i j}\right)$ is upper triangular if $r_{i j}=0$ whenever $i>j$.
$\underline{\text { Hint: }}$ There is an orthonormal basis $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of \mathbf{C}^{n} whose first m members come from applying the Gram-Schmidt process to the columns of M. (Why?) Let Q be the matrix whose columns are the $v_{i} \ldots$
(c) For $M=\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & -1\end{array}\right]$ find Q and R as in (b).

