QUALIFYING EXAM
 Math 554
 August 2003

1. (12 points) Without proof give an example of:
(a) a domain R and a finitely generated torsionfree R-module that is not free;
(b) a nonzero commutative ring R that is not a field so that every R-module is torsionfree;
(c) a normal matrix with entries in \mathbb{R} that is not similar to a diagonal matrix with entries in \mathbb{R}.
2. (13 points) For R a commutative ring and M an R-module let $M^{\star}=\operatorname{Hom}_{R}(M, R)$ denote the R-dual of M.
(a) Let M and N be R-modules. Show that $(M \oplus N)^{\star} \cong M^{\star} \oplus N^{\star}$.
(b) Let R be a principal ideal domain and M a finitely generated R-module. Show that M^{\star} is a free R-module with $\operatorname{rank} M^{\star}=\operatorname{rank} M$.
3. (12 points) Let $\mathbb{Q}[X]$ be the polynomial ring in one variable over \mathbb{Q}, n a positive integer, and $R=\mathbb{Q}[X] /\left(X^{n}\right)$. Classify all finitely generated R-modules up to R-isomorphisms.
4. (15 points) Let R be a commutative ring, F a free R-module of finite rank, and $\varphi \in \operatorname{End}_{R}(F)$ an R-endomorphism of F. Show that the following are equivalent:
(a) φ is bijective;
(b) φ is surjective;
(c) $\operatorname{det}(\varphi)$ is a unit of R.
5. (20 points) Let K be a field, V a K-vector space of dimension n, $\operatorname{End}_{K}(V)$ the K-vector space of K-endomorphisms of V, and $\varphi \in \operatorname{End}_{K}(V)$ a fixed K endomorphism. Show that:
(a) $U=\left\{\psi \in \operatorname{End}_{K}(V) \mid \varphi \psi=\psi \varphi\right\}$ is a subspace of $\operatorname{End}_{K}(V)$;
(b) $\operatorname{dim}_{K} U \geq n$;
(hint: first consider the case where V has a basis of the form $\left\{\varphi^{i}(v) \mid 0 \leq\right.$ $i \leq n-1\}$ for some $v \in V$)
(c) $W=\left\{\varphi \psi-\psi \varphi \mid \psi \in \operatorname{End}_{K}(V)\right\}$ is a subspace of $\operatorname{End}_{K}(V)$;
(d) $\operatorname{dim}_{K} W \leq n^{2}-n$.
6. (13 points) Determine the rational canonical form of the following matrix with entries in \mathbb{Q} :

$$
\left[\begin{array}{ccccc}
1 & -3 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 \\
2 & -2 & 1 & -3 & -2 \\
0 & -2 & 1 & -1 & 0 \\
1 & -1 & 0 & 0 & 0
\end{array}\right] .
$$

7. (15 points) Let K be a field of characteristic zero, $V=\operatorname{Mat}_{n}(K)$ the K-vector space of n by n matrices with entries in K, and $W=\{A \in V \mid \operatorname{Tr}(A)=0\}$ the subspace of V consisting of the matrices whose trace is zero. Let $f: V \times V \rightarrow K$ be defined by $f(A, B)=n \operatorname{Tr}(A B)-\operatorname{Tr}(A) \operatorname{Tr}(B)$.
(a) Show that f is a symmetric bilinear form;
(b) show that f restricted to W is non-degenerate;
(c) determine V^{\perp} and the rank of f.
