QUALIFYING EXAM Math 554 August 2003

- **1.** (12 points) Without proof give an example of:
 - (a) a domain R and a finitely generated torsionfree R-module that is not free;
 - (b) a nonzero commutative ring R that is not a field so that every R-module is torsionfree;
 - (c) a normal matrix with entries in \mathbb{R} that is not similar to a diagonal matrix with entries in \mathbb{R} .
- **2.** (13 points) For R a commutative ring and M an R-module let $M^* = \operatorname{Hom}_R(M, R)$ denote the R-dual of M.
 - (a) Let M and N be R-modules. Show that $(M \oplus N)^* \cong M^* \oplus N^*$.
 - (b) Let R be a principal ideal domain and M a finitely generated R-module. Show that M^* is a free R-module with rank $M^* = \operatorname{rank} M$.
- **3.** (12 points) Let $\mathbb{Q}[X]$ be the polynomial ring in one variable over \mathbb{Q} , *n* a positive integer, and $R = \mathbb{Q}[X]/(X^n)$. Classify all finitely generated *R*-modules up to *R*-isomorphisms.
- 4. (15 points) Let R be a commutative ring, F a free R-module of finite rank, and $\varphi \in \operatorname{End}_R(F)$ an R-endomorphism of F. Show that the following are equivalent:
 - (a) φ is bijective;
 - (b) φ is surjective;
 - (c) $det(\varphi)$ is a unit of R.
- 5. (20 points) Let K be a field, V a K-vector space of dimension n, $\operatorname{End}_{K}(V)$ the K-vector space of K-endomorphisms of V, and $\varphi \in \operatorname{End}_{K}(V)$ a fixed K-endomorphism. Show that:
 - (a) $U = \{ \psi \in \operatorname{End}_K(V) | \varphi \psi = \psi \varphi \}$ is a subspace of $\operatorname{End}_K(V)$;

- (b) $\dim_{K} U \ge n$; (hint: first consider the case where V has a basis of the form $\{\varphi^{i}(v) | 0 \le i \le n-1\}$ for some $v \in V$)
- (c) $W = \{\varphi \psi \psi \varphi | \psi \in \operatorname{End}_K(V)\}$ is a subspace of $\operatorname{End}_K(V)$;
- (d) $\dim_K W \leq n^2 n$.
- 6. (13 points) Determine the rational canonical form of the following matrix with entries in \mathbb{Q} :

$$\begin{bmatrix} 1 & -3 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 2 & -2 & 1 & -3 & -2 \\ 0 & -2 & 1 & -1 & 0 \\ 1 & -1 & 0 & 0 & 0 \end{bmatrix}$$

- 7. (15 points) Let K be a field of characteristic zero, $V = \operatorname{Mat}_n(K)$ the K-vector space of n by n matrices with entries in K, and $W = \{A \in V | \operatorname{Tr}(A) = 0\}$ the subspace of V consisting of the matrices whose trace is zero. Let $f : V \times V \to K$ be defined by $f(A, B) = n \operatorname{Tr}(AB) - \operatorname{Tr}(A) \operatorname{Tr}(B)$.
 - (a) Show that f is a symmetric bilinear form;
 - (b) show that f restricted to W is non-degenerate;
 - (c) determine V^{\perp} and the rank of f.