QUALIFYING EXAMINATION JANUARY 2002 MATH 554 - PROF. MATSUKI

NAME

ID #

(10 points)

1. Let A be an Abelian group satisfying conditions

 $(\alpha) \ (5^3 \cdot 7^4) A = 0$, and

 $(\beta) \ \#\{a \in A; (5 \cdot 7)a = 0\} = 5^2 \cdot 7^2.$

(i) Show that A is finitely generated.

(ii) How many such Abelian groups that satisfy conditions (α) and (β) do we have up to isomorphism ? (10 points)

2. Let A be the following 3×3 matrix

$$A = \begin{pmatrix} 0 & 2 & 1 \\ -4 & 6 & 2 \\ 4 & -4 & 0 \end{pmatrix}.$$

(i) Find the rational canonical form C of A, and an invertible matrix S such that $C = S^{-1}AS$. (10 points)

(ii) Find the Jordan canonical form J of A, and an invertible matrix T such that $J = T^{-1}AT$. (10 points)

3. Let A be a 3×3 matrix whose Jordan canonical form is

$$\left(\begin{array}{rrr} -2 & 0 & 0 \\ 0 & 7 & 1 \\ 0 & 0 & 7 \end{array}\right).$$

Let B be a 4×4 matrix whose Jordan canonical form is

$$\begin{pmatrix} 7 & 1 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 7 \end{pmatrix}.$$

Consider the space V of 3×4 matrices X with entries in \mathbb{C} such that

$$AX = XB.$$

Find the dimension of the vector space V over \mathbb{C} .

(20 points)

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}\text{-}T_{E}\!X$

4. Let $V = \mathbb{C}^4$ be a 4-dimensional vector space over \mathbb{C} and let $f: V \to V$ be a linear map defined by f(v) = Tv where

$$T = \begin{pmatrix} \alpha & 1 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \beta & 1 \\ 0 & 0 & 0 & \beta \end{pmatrix}.$$

(Note that an element $v \in \mathbb{C}^4$ is considered to be a column vector.)

(i) Find the criterion on α and β so that V has only a finite number of finvariant subspaces if and only if this criterion is satisfied. (10 points)

(ii) Find the number of f-invariant subspaces of dimension 2 when α and β satisfy the above criterion. (10 points)

Note: A subspace $W \subset V$ is said to be *f*-invariant for *f* if $f(W) \subset W$.

5. How many 2×2 matrices A with entries complex numbers are there, up to similarity, with property that the minimal polynomial of A^2 coincides with that of A? (20 points)

6. Let A be an $n \times n$ complex matrix. Show that

$$|\det(A)| \le ||a_1|| ||a_2|| \cdots ||a_n||,$$

where a_i denotes the *i*-th column vector of A and where

$$||a_i|| = \sqrt{a_{1i} \cdot \overline{a_{1i}} + \dots + a_{ni} \cdot \overline{a_{ni}}}.$$

(20 points)

7. Let $A_1, ..., A_m$ be $n \times n$ Hermitian matrices. Show that $\sum_{i=1}^m A_i^2 = 0$ if and only if $A_i = 0$ for i = 1, ..., m. (20 points)

8. How many 3×3 (real) orthogonal matrices are there, up to similarity, with property det(A) = -1 and $A^3 = A$? (20 points)

9. To a quadratic form over \mathbb{R} in n variables

$$Q(x_1, ..., x_n) = \Sigma a_{ij} x_i x_j$$
 with $a_{ij} = a_{ji}$ and $a_{ij} \in \mathbb{R}$,

we associate a real $n \times n$ symmetric matrix $A = (a_{ij})$.

Consider a 3×3 matrix

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$$

and regard

$$Q(x_{11}, ..., x_{33}) = \text{Trace}(X^2)$$

as a real quadratic form in 9 variables. Associate the corresponding real 9×9 matrix A to Q as above.

Find the numbers of positive, negative, and zero eigenvalues of A, respectively. (20 points)

10. Let H be an $n \times n$ Hermitian matrix with only positive eigenvalues. Show that, for any complex $n \times n$ matrix A, the matrices H and A commute if and only if H^2 and A commute, i.e.,

$$AH = HA \iff H^2A = AH^2.$$

(20 points)