QUALIFYING EXAMINATION AUGUST 2002
 MATH 554-Prof. Moh

You have to show your work and reasonings.
(10 points) (1) Let A be an invertible square matrix. Prove that there is a set of elementary matrices E_{1}, \ldots, E_{k} such that $E_{k} \ldots E_{1} A$ is the identity.
(10 points) (2) Show that the number of invertible $n \times n$ matrices over \mathbf{F}_{p} is $\prod_{i=0}^{i=n-1}\left(p^{n}-p^{i}\right)$ where p is a prime number and \mathbf{F}_{p} is $Z / p Z$, the finite field of p elements.
(10 points) (3) Find all linear transformation $T: R^{2} \mapsto R^{2}$ which carry the line $\mathrm{y}=2 \mathrm{x}$ to the line $\mathrm{y}=3 \mathrm{x}$.
(20 points) (4) Let A, B be two $n \times n$ matrices with $A B=0$. Show that $\operatorname{rank}(A)+$ $\operatorname{rank}(B) \leq n$.
(10 points) (5) Find all non-isomorphic commutative group of order 50.
(10 points) (6) Show that a matrix A is similar to its transpose A^{t}.
(20 points) (7) An $n \times n$ matrix A is said to be a rotation matrix if it is orthogonal and $\operatorname{det} A=1$. Let A be a 3×3 real rotation matrix. Show that 1 is an eigen value.
(10 points) (8) Find the invariant factors of the following matrix;

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 2 \\
0 & 2 & 0
\end{array}\right)
$$

(10 points) (9) Show that an $n \times n$ matrix A is c for some constant c iff it commutes with every $n \times n$ matrix B
(10 points) (10) Let A be an $n \times n$ complex matrix. Suppose that $A^{2}=A$. Show that A is self-adjoint iff $A^{*} A=A A^{*}$
(10 points) (11) Find the Jordan canonical form of the following matrix over the complex numbers C;

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
1 & 2 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

(10 points) (12) Describe all bilinear forms f on R^{3} which satisfy $f(\alpha, \beta)=-f(\beta, \alpha)$ for all α, β.

