QUALIFYING EXAMINATION AUGUST 2001 MATH 554-PROF. ARAPURA

1. (30 points) Determine whether the following statements are true or false (you must justify the answer with either a proof or a counterexample). All matrices and vector spaces in this problem are defined over the field \mathbb{R}.
a) Let A and B be $n \times n$ matrices. Then $A B$ is invertible if and only if A and B are.
b) Every square matrix is a product of elementary matrices.
c) There exists a 3×2 matrix A and a 2×3 matrix B such that $A B$ is invertible.
d) If V and W are finite dimensional vector spaces such that $\operatorname{dim} V \leq \operatorname{dim} W$, then V is isomorphic to a subspace of W.
e) If v_{1}, v_{2}, v_{3} are three distinct nonzero vectors in a finite dimensional vector space V, there exists a linear transformation $f: V \rightarrow \mathbb{R}$ satisfying $f\left(v_{i}\right)=i$ for all i.
f) If v_{1}, v_{2}, v_{3} are three linearly independent vectors in a finite dimensional vector space V, there exists a linear transformation $f: V \rightarrow \mathbb{R}$ satisfying $f\left(v_{i}\right)=i$ for all i.
2. (10 points) Let V be a finite dimensional vector space. Suppose that $W_{1}, W_{2} \subset V$ are subspaces. Define the linear tranformation $L: W_{1} \oplus W_{2} \rightarrow V$ by $L\left(w_{1}, w_{2}\right)=$ $w_{1}+w_{2}$. Calculate the kernel and image of L, and use this to prove that

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

3. (20 points) Let A and B be $n \times n$ matrices over a field F. Suppose that A is invertible.
a) If F is infinite, prove that there exists $\lambda \in F$ such that $\lambda A+B$ is invertible.
b) Give an example to show that the conclusion of part a) can fail when $F=$ $\mathbb{Z} / 2 \mathbb{Z}$.
4. (20 points) Let A be an $n \times n$ matrix with entries in a field F. Assume that A is idempotent i.e. $A^{2}=A$. Let $L: F^{n} \rightarrow F^{n}$ be the corresponding linear transformation defined by $L v=A v$.
a) Prove that the only possible eigenvalues for A are 0 and 1.
b) Prove that v is an eigenvector of A with eigenvalue 1 if and only if v lies in the image $i m(L)$.
c) Prove that $F^{n}=\operatorname{ker}(L)+i m(L)$ and that $\operatorname{ker}(L) \cap i m(L)=0$.
d) Let $B=\left(b_{i j}\right)$ be the matrix representing L in a given basis $v_{1}, \ldots v_{n}$ of F^{n}, i.e. $L v_{i}=\sum_{j} b_{j i} v_{j}$. Show that the basis can be chosen so that

$$
B=\left(\begin{array}{cccccc}
0 & & \cdots & & & 0 \\
& \ddots & & & & \\
\vdots & & 0 & & & \vdots \\
& & & 1 & & \\
& & & & \ddots & \\
0 & & \ldots & & & 1
\end{array}\right)
$$

5. (10 points) Let $S \subset \mathbb{Z}^{3}$ be the sub-abelian group generated by $(2,2,2)^{T}$ and $(3,1,1)^{T}$. Express \mathbb{Z}^{3} / S as a direct sum of cyclic groups.
6. (10 points) Let

$$
A=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -3 \\
0 & 1 & 3
\end{array}\right)
$$

and let $M=\mathbb{C}^{3}$ with the $\mathbb{C}[x]$-module structure determined by the rule $p(x) v=$ $p(A) v=\left(a_{n} A^{n}+\ldots+a_{0} I\right) v$ for $p(x)=a_{n} x^{n}+\ldots+a_{0} \in \mathbb{C}[x], v \in M$. Find a polynomial $f(x)$ such that M is isomorphic to $\mathbb{C}[x] /(f)$. (Hint: Consider the $\mathbb{C}[x]$-module homomorphism $\phi: \mathbb{C}[x] \rightarrow M$ which sends 1 to $(1,0,0)^{T}$.)
7. (20 points) Suppose that A is a 2×2 matrix over an algebraically closed field F.
a) Prove that A is either diagonalizable or similar to a matrix of the form $\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)$, and show that these possibilities are mutually exclusive.
b) Prove that A^{2} is always diagonalizable if F has characteristic 2.

