QUALIFYING EXAMINATION
 JANUARY 2000
 MATH 554 - Prof. Wang

Each problem is worth 10 points.

1. Let $A X=B$ and $A_{1} X=B_{1}$ be two consistent systems of linear equations. If they have the same set of solutions, prove that they are equivalent.
2. Let V be an n-dimensional subspace of $\mathbb{Q}[X]$ over \mathbb{Q}. Prove that there exist $f_{1}, \ldots, f_{n} \in V$ and positive integers m_{1}, \ldots, m_{n} such that $f_{i}\left(m_{j}\right)=\delta_{i j}$ for $1 \leq i, j \leq n$.
3. Let A be a linear operator on a finite dimensional vector space V over a field F. Show that

$$
\operatorname{rank}\left(A^{2}\right)+\operatorname{rank}\left(A^{7}\right) \geq \operatorname{rank}\left(A^{5}\right)+\operatorname{rank}\left(A^{4}\right)
$$

4. Let F be a field and $A, B \in M_{n n}(F)$. Show that $A B$ and $B A$ have the same characteristic polynomial.
5. Let V be a finite dimensional vector space over a field of characteristic 0 , $A \in L(V, V)$ and T_{A} the linear operator on $L(V, V)$ given by $T_{A}(B)=A B-B A$. Assume that B is a characteristic vector of T_{A} with nonzero characteristic value. Show that B is nilpotent.
6. Let V be a finite dimensional vector space over a field F with $|F|>2$ and $A \in L(V, V)$. Show that there exist $B, C \in L(V, V)$ such that
(i) $A=B+C$,
(ii) both B and C have cyclic vectors.
7. Let $A \in M_{6 \times 6}(\mathbb{Q})$ satisfying $A^{3}=I$. Write out the possible rational forms for A.
8. Let $A \in M_{n n}(\mathbb{R})$ satisfying $A^{t} A=A A^{t}$. Show that there exists a real polynomial $f(X)$ such that $f(A)=A^{t}$.
9. Let $A, B \in M_{n n}(\mathbb{C})$. Assume that $A^{*}=A, B^{*}=B, \operatorname{tr}(A)=\operatorname{tr}(B)$ and $X^{*} A X \geq X^{*} B X$ for all $X \in M_{n \times 1}(\mathbb{C})$. Show that $A=B$.
10. Let F be a field of characteristic 2. Give an example of a vector space V over F and distinct projections E_{1}, E_{2}, E_{3} of V such that
(i) $E_{1}+E_{2}+E_{3}=I$
(ii) $E_{i} E_{j} \neq 0 \quad$ for $\quad i \neq j$.
