QUALIFYING EXAMINATION AUGUST, 2000 MATH 554 - PROF. MOH

You have to show your work.

NOTATION: Let \mathbb{Z} be the ring of integers, \mathbb{Q} , \mathbb{R} , \mathbb{C} be the fields of rational, real, complex numbers respectively. Let *i* be the pure imaginary number $\sqrt{-1}$. Let \mathbb{K} be a field and $\mathbb{M}_n(\mathbb{K})$ be the set of $n \times n$ matrices with elements from \mathbb{K} . Let \mathbb{V} be an *n*-dimensional vector space over \mathbb{K} . Let α be a linear operator on V.

1. Let w be the complex number $e^{2\pi i/8}$, and the 8 by 8 complex matrix A be defined as $A = (a_{ij})$ with $a_{ij} = w^{(i-1)(j-1)}$.

- (a): Is A diagonalizable?
- (b): Find all eigenvalues of A.

[10 points] [10 points] **2.** A rotation of \mathbb{R}^n is defined to be a linear transformation of \mathbb{R}^n which preserves the length of all vectors and the orientation (i.e., with positive determinant). Let A be a rotation of \mathbb{R}^3 , show that 1 is an eigenvalue of A. [10 points]

3. Express the commutative group $\mathbb{Z}^3/(f_1, f_2, f_3)$ where $f_1 = (2, 4, 6), f_2 = (4, 6, 8), f_3 = (3, 4, 5)$ as a direct sum of cyclic groups. [10 points]

4. Let p be a prime number, and $A = \mathbb{Z}/(p^2) \oplus \mathbb{Z}/(p^2) \oplus \mathbb{Z}/(p^3)$. Compute the number of non-cyclic subgroups of A of order p^2 . [10 points]

5. Let $A \in \mathbb{M}_n(\mathbb{K})$. If A is nilpotent, then $A^n = 0$. [10 points]

6. Find the area of the convex pentagon in \mathbb{R}^2 with vertices (0,0), (5,0), (7,3), (4,6), (0,4). [10 points]

7. Let \mathbb{P}_3 be the vector space of all real polynomials of degree 3 or less. Let the inner product (f|g) be defined as $\int_0^1 fg \, dx$. Find an orthonormal basis of \mathbb{P}_3 . [10 points]

8. Find the Jordan canonical form of the following matrix over complex numbers

$$\begin{pmatrix} -1 & 1 & 1 \\ -3 & 2 & 2 \\ -1 & 1 & 1 \end{pmatrix}$$

[10 points]

9. Let A be an $n \times n$ normal complex matrix. Show that A^* is a polynomial in A. [10 points]