Qualifying Examination
 August, 2000
 Math 554 - Prof. Moh

You have to show your work.
Notation: Let \mathbb{Z} be the ring of integers, $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ be the fields of rational, real, complex numbers respectively. Let i be the pure imaginary number $\sqrt{-1}$. Let \mathbb{K} be a field and $\mathbb{M}_{n}(\mathbb{K})$ be the set of $n \times n$ matrices with elements from \mathbb{K}. Let \mathbb{V} be an n-dimensional vector space over \mathbb{K}. Let α be a linear operator on V.

1. Let w be the complex number $e^{2 \pi i / 8}$, and the 8 by 8 complex matrix A be defined as $A=\left(a_{i j}\right)$ with $a_{i j}=w^{(i-1)(j-1)}$.
(a): Is A diagonalizable?
[10 points]
(b): Find all eigenvalues of A.
[10 points]
2. A rotation of \mathbb{R}^{n} is defined to be a linear transformation of \mathbb{R}^{n} which preserves the length of all vectors and the orientation (i.e., with positive determinant). Let A be a rotation of \mathbb{R}^{3}, show that 1 is an eigenvalue of A.
[10 points]
3. Express the commutative group $\mathbb{Z}^{3} /\left(f_{1}, f_{2}, f_{3}\right)$ where $f_{1}=(2,4,6), f_{2}=$ $(4,6,8), f_{3}=(3,4,5)$ as a direct sum of cyclic groups.
4. Let p be a prime number, and $A=\mathbb{Z} /\left(p^{2}\right) \oplus \mathbb{Z} /\left(p^{2}\right) \oplus \mathbb{Z} /\left(p^{3}\right)$. Compute the number of non-cyclic subgroups of A of order p^{2}.
[10 points]
5. Let $A \in \mathbb{M}_{n}(\mathbb{K})$. If A is nilpotent, then $A^{n}=0$.
[10 points]
6. Find the area of the convex pentagon in \mathbb{R}^{2} with vertices $(0,0),(5,0),(7,3),(4,6),(0,4)$. [10 points]
7. Let \mathbb{P}_{3} be the vector space of all real polynomials of degree 3 or less. Let the inner product $(f \mid g)$ be defined as $\int_{0}^{1} f g d x$. Find an orthonormal basis of \mathbb{P}_{3}. [10 points]
8. Find the Jordan canonical form of the following matrix over complex numbers

$$
\left(\begin{array}{lll}
-1 & 1 & 1 \\
-3 & 2 & 2 \\
-1 & 1 & 1
\end{array}\right)
$$

[10 points]
9. Let A be an $n \times n$ normal complex matrix. Show that A^{*} is a polynomial in A. [10 points]

