Name: \qquad
(7) 1. Let V be an abelian group and assume that $\left(v_{1}, \ldots, v_{m}\right)$ are generators of V. Describe a process for obtaining an $m \times n$ matrix $A \in \mathbb{Z}^{m \times n}$ such that if $\phi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ is the \mathbb{Z}-module homomorphism defined by left multiplication by A, then $V \cong \mathbb{Z}^{m} / \phi\left(\mathbb{Z}^{n}\right)$. Such a matrix A is called a presentation matrix of V.
(15) 2. Consider the abelian group $V=\mathbb{Z} /\left(5^{4}\right) \oplus \mathbb{Z} /\left(5^{3}\right) \oplus \mathbb{Z}$.
(1) Write down a presentation matrix for V as a \mathbb{Z}-module.
(2) Let W be the cyclic subgroup of V generated by the image of the element $\left(5^{2}, 5,5\right)$ in $\mathbb{Z} /\left(5^{4}\right) \oplus \mathbb{Z} /\left(5^{3}\right) \oplus \mathbb{Z}=V$. Write down a presentation matrix for W.
(3) Write down a presentation matrix for the quotient module V / W.
(20) 3. Let R be a commutative ring and let V and W denote free R-modules of rank 4 and 5 , respectively. Assume that $\phi: V \rightarrow W$ is an R-module homomorphism, and that $\mathbf{B}=\left(v_{1}, \ldots, v_{4}\right)$ is an ordered basis of V and $\mathbf{B}^{\prime}=\left(w_{1}, \ldots, w_{5}\right)$ is an ordered basis of W.
(1) What is meant by the coordinate vector of $v \in V$ with respect to the basis B?
(2) Describe how to obtain a matrix $A \in R^{5 \times 4}$ so that left multiplication by A on R^{4} represents $\phi: V \rightarrow W$ with respect to \mathbf{B} and \mathbf{B}^{\prime}.
(3) How does the matrix A change if we change the basis \mathbf{B} by replacing v_{1} by $v_{1}+v_{2}$?
(4) How does the matrix A change if we change the basis \mathbf{B}^{\prime} by replacing w_{1} by $w_{1}+w_{2}$?
4. Let A be an 4×5 matrix with integer coefficients and let $\phi: \mathbb{Z}^{5} \rightarrow \mathbb{Z}^{4}$ be defined by left multipliation by A.
(1) Prove or disprove: if ϕ is surjective, then the determinants of the 4×4 minors of A generate the unit ideal of \mathbb{Z}.
(2) Prove or disprove: if ϕ is surjective, then there exists a matrix $B \in \mathbb{Z}^{5 \times 4}$ such that $A B$ is the 4×4 identity matrix.
5. Let $V=\mathbb{Z}^{2}$ and let L be the submodule of V spanned by the columns of $A=\left[\begin{array}{cc}6 & 4 \\ 8 & 12\end{array}\right]$. Find a basis $\left(\vec{\alpha}_{1}, \vec{\alpha}_{2}\right)$ of V and integers c_{1}, c_{2} so that $c_{1} \vec{\alpha}_{1}$, $c_{2} \vec{\alpha}_{2}$ is a basis for L.
(10) 6. If $A \in \mathbb{R}^{n \times n}$ is symmetric, does there exist $B \in \mathbb{R}^{n \times n}$ such that $B^{3}=A$? Justify your answer.
7. Let F be a field and let $F[t]$ be a polynomial ring in one variable over F. Let r and s and $a_{1} \geq a_{2} \geq \cdots \geq a_{r}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{s}$ be positive integers. Suppose

$$
\begin{gathered}
V=F[t] /\left(t^{a_{1}}\right) \oplus F[t] /\left(t^{a_{2}}\right) \oplus \cdots \oplus F[t] /\left(t^{a_{r}}\right) \\
1
\end{gathered}
$$

and

$$
W=F[t] /\left(t^{b_{1}}\right) \oplus F[t] /\left(t^{b_{2}}\right) \oplus \cdots \oplus F[t] /\left(t^{b_{s}}\right) .
$$

If the $F[t]$-modules V and W are isomorphic, prove the structure theorem that asserts that $r=s$, and that $a_{i}=b_{i}$ for $i=1, \ldots, r$.
8. Let $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a linear operator and let $f(x) \in \mathbb{C}[x]$ be a monic polynomial. Suppose $a \in \mathbb{C}$ is an eigenvalue of $f(T)$. Prove or disprove that there must exist an eigenvalue b of T such that $f(b)=a$.
(10) 9. Suppose $A \in \mathbb{R}^{5 \times 3}$ has rank 3. Let A^{T} denote the transpose of A. Prove or disprove that $A^{T} A \in \mathbb{R}^{3 \times 3}$ must be nonsingular.
(12) 10. Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ be a linear operator that preserves orthogonality, i.e., if $u \perp v$, then $T(u) \perp T(v)$. Prove that $T=\lambda S$ for some orthogonal operator S and some $\lambda \in \mathbb{R}$.
(10) 11. Suppose $A \in \mathbb{R}^{n \times n}$. If A is normal and if the eigenvalues of A are all real, does it follow that A is symmetric? Justify your answer with a proof or a counterexample.
12. If v is a nonzero vector in \mathbb{R}^{3} and w is a nonzero vector in \mathbb{R}^{5}, must there exist a 3 by 5 matrix A whose column space is spanned by v and whose row space is spanned by w ? Justify your answer.
(10) 13. Let V be a vector space over an infinite field F. Prove that V is not the union of finitely many proper subspaces.
(10) 14. Suppose $S: \mathbb{C}^{5} \rightarrow \mathbb{C}^{5}$ and $T: \mathbb{C}^{5} \rightarrow \mathbb{C}^{5}$ are commuting linear operators. Prove that there exists a nonzero $v \in \mathbb{C}^{5}$ which is an eigenvector for both S and T.
15. If A and B in $\mathbb{R}^{n \times n}$ are normal matrices, does it follow that $A B$ is also normal? Justify your answer.
16. Is $A \in \mathbb{C}^{n \times n}$ always similar to its transpose A^{T} ? Justify your answer.
17. Classify up to similarity all matrices $A \in \mathbb{C}^{3 \times 3}$ such that $A^{3}=I$, i.e., write down all possibilities for the Jordan form of A.

