Name: \qquad
(20) 1. Let $A \in \mathbb{C}^{4 \times 4}$ be a diagonal matrix with main diagonal entries $1,2,3,4$. Define $T_{A}: \mathbb{C}^{4 \times 4} \rightarrow \mathbb{C}^{4 \times 4}$ by $T_{A}(B)=A B-B A$.
(i) What is $\operatorname{dim}\left(\operatorname{ker}\left(T_{A}\right)\right)$?
(ii) What is $\operatorname{dim}\left(\operatorname{im}\left(T_{A}\right)\right)$?
(iii) What are the eigenvalues of T_{A} ?
(iv) What is the minimal polynomial of T_{A} ?
(v) Is T_{A} diagonalizable? Explain.
(12) 2. (i) Let $A \in \mathbb{Z}^{3 \times 4}$ and define $\phi_{A}: \mathbb{Z}^{4} \rightarrow \mathbb{Z}^{3}$ by $\phi_{A}(X)=A X$.

True or False? If ϕ_{A} is surjective, then the determinant of some 3×3 minor of A is a unit of \mathbb{Z}. Explain.
(ii) Let $B \in \mathbb{Z}^{4 \times 3}$ and define $\phi_{B}: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{4}$ by $\phi_{B}(X)=B X$.

True or False? If the determinant of some 3×3 minor of B is nonzero, then ϕ_{B} is injective. Explain.
3. True or False? If $A \in \mathbb{R}^{n \times n}$ is normal and if the eigenvalues of A are all real, then A is symmetric. Justify your answer.
(12) 4. Let V be a vector space over an infinite field F. Prove that V is not the union of finitely many proper subspaces.
(10) 5. Let V be a vector space over an infinite field F. Suppose $\alpha_{1}, \ldots, \alpha_{m}$ are finitely many nonzero vectors in V. Prove there exists a linear functional f on V such that $f\left(\alpha_{i}\right) \neq 0$ for each i.
6. Let V be an abelian group generated by a, b, c, where $2 a=4 b, 2 b=4 c, 2 c=$ $4 a$, and where these 3 relations generate all the relations on a, b, c.
(i) For some positive integer n, find elements $x_{1}, \ldots, x_{n} \in V$ that generate V and have the property that $c_{i} \in \mathbb{Z}$ with $c_{1} x_{1}+c_{2} x_{2}+\cdots c_{n} x_{n}=0$ implies each $c_{i} x_{i}=0$.
(ii) Write V as a direct sum of cyclic groups. What is the order of V ?
(18) 7. Let F be a field, let m and n be positive integers, and let $F^{m \times n}$ denote the
set of $m \times n$ matrices with entries in F.
(i) What does it mean for $R \in F^{m \times n}$ to be a row-reduced echelon matrix ?
(ii) Suppose W is a subspace of F^{n} with $\operatorname{dim} W \leq m$. Prove there is precisely one row-reduced echelon matrix $R \in F^{m \times n}$ such that W is the row space of R.
8. Suppose F is a field of characteristic zero and V is a finite-dimensional vector space over F. If E_{1}, \ldots, E_{k} are projection operators of V such that $E_{1}+\cdots+E_{k}=I$, the identity operator on V, prove that $E_{i} E_{j}=0$ for $i \neq j$.
10. Suppose \mathcal{F} is a subspace of $\mathbb{C}^{4 \times 4}$ such that for each $A, B \in \mathcal{F}, A B=B A$. If there exists $A \in \mathcal{F}$ having at least two distinct characteristic values, prove that $\operatorname{dim} \mathcal{F} \leq 4$.
11. Assume that V is a finite-dimensional vector space over an infinite field F and $T: V \rightarrow V$ is a linear operator. Give to V the structure of a module over the polynomial ring $F[x]$ by defining $x \alpha=T(\alpha)$ for each $\alpha \in V$.
(1) Outline a proof that V is a direct sum of cyclic $F[x]$-modules.
(2) In terms of the expression for V as a direct sum of cyclic $F[x]$-modules, what are necessary and sufficient conditions in order that V have only finitely many T-invariant submodules? Explain.
(18) 12. Assume that M is a module over an integral domain D. Recall that a submodule N of M is said to be pure if for each $y \in N$ and $a \in D, a x=y$ is solvable in M if and only if it is solvable in N.
(1) If N is a direct summand of M, prove that N is pure in M
(2) For $x \in M$, let $x+N$ denote the coset representing the image of x in the quotient module M / N. If N is a pure submodule of M and $\operatorname{ann}(x+N)$ is a principal ideal (d) of D, prove that there exists $x^{\prime} \in D$ such that $x+N=x^{\prime}+N$ and ann $x^{\prime}=\left\{a \in D \mid a x^{\prime}=0\right\}$ is the principal ideal (d).
(18) 13 Assume that M is a finitely generated torsion module over the polynomial ring $F[x]$, where F is a field, and that N is a pure submodule of M. Prove that there exists a submodule L of M such that $N+L=M$ and $N \cap L=0$.

