Name: .

- (20) 1. Let $A \in \mathbb{C}^{4 \times 4}$ be a diagonal matrix with main diagonal entries 1, 2, 3, 4. Define $T_A : \mathbb{C}^{4 \times 4} \to \mathbb{C}^{4 \times 4}$ by $T_A(B) = AB - BA$.
 - (i) What is $\dim(\ker(T_A))$?
 - (ii) What is $\dim(\operatorname{im}(T_A))$?
 - (iii) What are the eigenvalues of T_A ?
 - (iv) What is the minimal polynomial of T_A ?
 - (v) Is T_A diagonalizable? Explain.
- (12) 2. (i) Let $A \in \mathbb{Z}^{3 \times 4}$ and define $\phi_A : \mathbb{Z}^4 \to \mathbb{Z}^3$ by $\phi_A(X) = AX$.

True or False? If ϕ_A is surjective, then the determinant of some 3×3 minor of A is a unit of Z. Explain.

(ii) Let $B \in \mathbb{Z}^{4 \times 3}$ and define $\phi_B : \mathbb{Z}^3 \to \mathbb{Z}^4$ by $\phi_B(X) = BX$.

True or False? If the determinant of some 3×3 minor of B is nonzero, then ϕ_B is injective. Explain.

- (10) 3. True or False? If A ∈ ℝ^{n×n} is normal and if the eigenvalues of A are all real, then A is symmetric. Justify your answer.
- (12) 4. Let V be a vector space over an infinite field F. Prove that V is not the union of finitely many proper subspaces.
- (10) 5. Let V be a vector space over an infinite field F. Suppose α₁,..., α_m are finitely many nonzero vectors in V. Prove there exists a linear functional f on V such that f(α_i) ≠ 0 for each i.
- (20) 6. Let V be an abelian group generated by a, b, c, where 2a = 4b, 2b = 4c, 2c = 4a, and where these 3 relations generate all the relations on a, b, c.
 - (i) For some positive integer n, find elements x₁,..., x_n ∈ V that generate V and have the property that c_i ∈ Z with c₁x₁ + c₂x₂ + ··· c_nx_n = 0 implies each c_ix_i = 0.
 - (ii) Write V as a direct sum of cyclic groups. What is the order of V?
- (18) 7. Let F be a field, let m and n be positive integers, and let $F^{m \times n}$ denote the

set of $m \times n$ matrices with entries in F.

- (i) What does it mean for $R \in F^{m \times n}$ to be a row-reduced echelon matrix ?
- (ii) Suppose W is a subspace of Fⁿ with dim W ≤ m. Prove there is precisely one row-reduced echelon matrix R ∈ F^{m×n} such that W is the row space of R.
- (12) 8. Suppose F is a field of characteristic zero and V is a finite-dimensional vector space over F. If E₁,..., E_k are projection operators of V such that E₁ + ··· + E_k = I, the identity operator on V, prove that E_iE_j = 0 for i ≠ j.
- (10) 9. Prove or disprove: if $T : \mathbb{R}^4 \to \mathbb{R}^4$ is a linear operator such that every subspace of \mathbb{R}^4 is invariant under T, then T is a scalar multiple of the identity operator.
- (18) 10. Suppose \mathcal{F} is a subspace of $\mathbb{C}^{4\times 4}$ such that for each $A, B \in \mathcal{F}, AB = BA$. If there exists $A \in \mathcal{F}$ having at least two distinct characteristic values, prove that dim $\mathcal{F} \leq 4$.
- (22) 11. Assume that V is a finite-dimensional vector space over an infinite field F and T : V → V is a linear operator. Give to V the structure of a module over the polynomial ring F[x] by defining xα = T(α) for each α ∈ V.
 - (1) Outline a proof that V is a direct sum of cyclic F[x]-modules.
 - (2) In terms of the expression for V as a direct sum of cyclic F[x]-modules, what are necessary and sufficient conditions in order that V have only finitely many T-invariant submodules? Explain.
- (18) 12. Assume that M is a module over an integral domain D. Recall that a submodule N of M is said to be *pure* if for each $y \in N$ and $a \in D$, ax = y is solvable in M if and only if it is solvable in N.
 - (1) If N is a direct summand of M, prove that N is pure in M
 - (2) For x ∈ M, let x + N denote the coset representing the image of x in the quotient module M/N. If N is a pure submodule of M and ann(x + N) is a principal ideal (d) of D, prove that there exists x' ∈ D such that x + N = x' + N and ann x' = {a ∈ D | ax' = 0} is the principal ideal (d).

(18) 13 Assume that M is a finitely generated torsion module over the polynomial ring F[x], where F is a field, and that N is a pure submodule of M. Prove that there exists a submodule L of M such that N + L = M and $N \cap L = 0$.