Qualifying Examination Math 554

Name:

January, 1998

[3]

Answering any question you can use the answers to preceding ones

NOTATION. $M_n(F)$ is the set of $n \times n$ matrices with elements in a field F.

1. For the matrix $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix} \in M_4(\mathbb{R})$ find: a) The rational form R and Jordan canonical form J.

a) The rational form R and Jordan canonical form J. [10] b) An invertible matrix $S \in M_4(\mathbb{R})$ such that $S^{-1}AS = J$. [5]

2. For $A = (a_{ij}) \in M_n(F)$ with $n \ge 3$, let $A^{\dagger} = (a_{ij}^{\dagger}) \in M_n(F)$ be the matrix in which a_{ij}^{\dagger} is the cofactor A_{ij} of a_{ij} . Prove that $A^{\dagger\dagger} = \det(A)^{n-2}A$. [10]

3. For all $A, B \in M_n(F)$, set $\langle A, B \rangle = tr(AB)$.

1. Prove that \langle , \rangle is a non-degenerate symmetric bilinear form on $M_n(F)$. [5] Fix $C \in M_n(F)$ and set $S = \{A \in M_n(F) : AC = CA\}$.

2. Show that
$$S^{\perp} = \{BC - CB : B \in M\}.$$
 [10]

NOTATION. T is a **linear operator** on a non-zero **finite dimensional vector** space V over F.

4.	The matrix of T in some basis of V is equal to	λ	U	U	0
		1	λ	0	0
		0	1	λ	0
		0	0	0	μ

For each property below, determine those λ and μ for which it holds:

- 1. The $\mathbb{C}[x]$ -module associated with T is cyclic.
- 2. There are only finitely many *T*-invariant subspaces. [3]
- 3. For every T-invariant subspace U of V there exists an T-invariant subspace U' of V such that $V = U \oplus U'$. [3]

5 Assume that the minimal polynomial and the characteristic polynomial of T are equal. Show that a linear operator $S: V \to V$ commutes with T if and only if S = p(T) for some polynomial $p(x) \in F[x]$. [10]

6. Assume that V has a positive-definite hermitian inner product over $F = \mathbb{C}$. If T satisfies $TT^* = T^*T$, prove that $T^* = p(T)$ for some polynomial $p(x) \in \mathbb{C}[x]$. [10]

7. Let V have a positive-definite inner product over $F = \mathbb{R}$, and the operator T preserves orthogonality, that is, $u \perp v$ implies that $T(u) \perp T(v)$. Prove that $T = \lambda S$ for some orthogonal operator S and some $\lambda \in \mathbb{R}$. [10]

NOTATION. *G* is an **abelian group**.

8. List (up to isomorphism) all G with |G| = 72 and explain why your list is complete. Determine those among them that contain the largest number of subgroups of order 6. [11]

9. Suppose G and H are abelian groups of finite order having the same number of elements of order n for every positive integer n. Show that G and H are isomorphic. (Hint : Begin by considering elements of prime order.) [10]