QUALIFYING EXAMINATION

August 1998 MATH 554 - Profs. Heinzer/Matsuki

Nam	ie: .	
(12)	1.	Give an example of an infinite dimensional vector space V over the field of real numbers $\mathbb R$ and linear operators S and T on V such that (i) S is onto, but not one-to-one.
		(ii) T is one-to-one, but not onto.
(10)	2.	Let \mathbb{Q} denote the field of rational numbers. Give an example of a linear operator $T:\mathbb{Q}^3\to\mathbb{Q}^3$ having the property that the only T -invariant subspaces are the whole space and the zero subspace. Explain why your example has this property.
(18)	3.	Let A and B be $n \times n$ matrices over the field $\mathbb Q$ of rational numbers. (i) Define " A and B are similar over $\mathbb Q$ ".

then A and B are also similar over \mathbb{Q} ." Justify your answer.

(ii) True or False: "If A and B are similar over the field $\mathbb C$ of complex numbers,

(iii) Let M and N be $n \times n$ matrices over the polynomial ring $\mathbb{Q}[t]$. Define "M and N are equivalent over $\mathbb{Q}[t]$ ".

- (iv) True or False: "Every matrix $M \in \mathbb{Q}[t]^{n \times n}$ is equivalent over $\mathbb{Q}[t]$ to a diagonal matrix." Justify your answer.
- (18) 3. (continued) Let $I \in \mathbb{Q}[t]^{n \times n}$ be the identity matrix and let $A, B \in \mathbb{Q}^{n \times n}$.
 - (v) True or False: "If A and B are similar over \mathbb{Q} , then tI-A and tI-B are equivalent over $\mathbb{Q}[t]$." Justify your answer.

(vi) True or False: "If $\det(tI - A) = \det(tI - B)$ in $\mathbb{Q}[t]$, then A and B are similar over \mathbb{Q} ." Justify your answer.

(vii) True or False: "Every invertible matrix $A \in \mathbb{Q}^{n \times n}$ is similar to a diagonal matrix over \mathbb{C} ." Justify your answer.

- (18) 4. Let \mathbb{Z} denote the ring of integers and let n be a positive integer. Prove that if M is a submodule of the free \mathbb{Z} -module \mathbb{Z}^n , then M is a free \mathbb{Z} -module.
- (18) 5. Let V be a finite-dimensional vector space over an algebraically closed field F and let $T:V\to V$ be a linear operator. Prove that T=D+N, where D is a diagonalizable linear operator and N is a a nilpotent linear operator and where D and N are polynomials in T.
- (14) 6. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator left multiplication by $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. True or False: "If W is a T-invariant subspace of \mathbb{R}^3 , then there exists a T-invariant subspace W' of \mathbb{R}^3 such that $W \oplus W' = \mathbb{R}^3$." Justify your answer.
- (16) 7. Let $F = \mathbb{F}_7$ be a finite field with 7 elements.
 - (i) What is the order of the multiplicative group $GL_2(\mathbb{F}_7)$ of 2×2 invertible matrices with entries from \mathbb{F}_7 ?

(ii) What is the order in $GL_2(\mathbb{F}_7)$ of the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$?

(iii) What is the order in $GL_2(\mathbb{F}_7)$ of the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$?

- (iv) What is the order of the group $SL_2(\mathbb{F}_7)$ of matrices in $GL_2(\mathbb{F}_7)$ having determinant 1?
- (10) 8. Let R = F[t] denote a polynomial ring in one variable over a field, let n be a positive integer, and let V be a free R-module of rank n.

 True or False: "If W is a proper submodule of V, then W is a free R-module of rank m < n." Justify your answer.

- (10) 9. Let F be a field and let $V = F^{4\times 4}$ be the vector space of 4×4 matrices over F. For $A \in F^{4\times 4}$, define $T_A: V \to V$ by $T_A(B) = AB$ for each $B \in V$. True or False: "The minimal polynomial of T_A is never equal to the characteristic polynomial of T_A ." Justify your answer.
- (18) 10. Let F be a field, let m and n be positive integers and let $A \in F^{m \times n}$ be an $m \times n$ matrix.
 - (i) Define "row space of A".

(ii) Define "column space of A".

- (iii) Prove that the dimension of the row space of A is equal to the dimension of the column space of A.
- (12) 11. Let $\varphi: \mathbb{Z}^2 \to \mathbb{Z}^3$ be defined by left multiplication by the matrix $\begin{bmatrix} 2 & 6 \\ 4 & 8 \\ 6 & 10 \end{bmatrix}$ and let $V = \mathbb{Z}^3/\varphi(\mathbb{Z}^2)$. Decompose V as a direct sum of cyclic abelian groups.

- (12) 12. Assume that $A \in \mathbb{R}^{3\times 3}$ has eigenvalues 0, 2, 4 and that v_0, v_2, v_4 are associated eigenvectors.
 - (i) Determine a basis for the column space of A?

- (ii) Determine all solutions of the system of equations $AX = v_2 + v_4$.
- (14) 13. Let t be an indeterminate over the field $\mathbb R$ and let $\varphi:\mathbb R[t]^3\to\mathbb R[t]^3$ be defined by left multiplication by the matrix $\begin{bmatrix} t(t-1) & 0 & 0 \\ 2 & t(t-1)^2 & 0 \\ 0 & 0 & t^3(t-1) \end{bmatrix}$. Decompose $\mathbb R[t]^3/\varphi(\mathbb R[t]^3)$ as a direct sum of cyclic $\mathbb R[t]$ -modules.