QUALIFYING EXAMINATION

August 1998

MATH 554 - Profs. Heinzer/Matsuki

Name:

1. Give an example of an infinite dimensional vector space V over the field of real numbers \mathbb{R} and linear operators S and T on V such that
(i) S is onto, but not one-to-one.
(ii) T is one-to-one, but not onto.
(10) 2. Let \mathbb{Q} denote the field of rational numbers. Give an example of a linear operator $T: \mathbb{Q}^{3} \rightarrow \mathbb{Q}^{3}$ having the property that the only T-invariant subspaces are the whole space and the zero subspace. Explain why your example has this property.
2. Let A and B be $n \times n$ matrices over the field \mathbb{Q} of rational numbers.
(i) Define " A and B are similar over \mathbb{Q} ".
(ii) True or False: "If A and B are similar over the field \mathbb{C} of complex numbers, then A and B are also similar over \mathbb{Q}." Justify your answer.
(iii) Let M and N be $n \times n$ matrices over the polynomial ring $\mathbb{Q}[t]$. Define" M and N are equivalent over $\mathbb{Q}[t]$ ".
(iv) True or False:"Every matrix $M \in \mathbb{Q}[t]^{n \times n}$ is equivalent over $\mathbb{Q}[t]$ to a diagonal matrix." Justify your answer.
3. (continued) Let $I \in \mathbb{Q}[t]^{n \times n}$ be the identity matrix and let $A, B \in \mathbb{Q}^{n \times n}$.
(v) True or False: "If A and B are similar over \mathbb{Q}, then $t I-A$ and $t I-B$ are equivalent over $\mathbb{Q}[t]$." Justify your answer.
(vi) True or False: "If $\operatorname{det}(t I-A)=\operatorname{det}(t I-B)$ in $\mathbb{Q}[t]$, then A and B are similar over \mathbb{Q}." Justify your answer.
(vii) True or False: "Every invertible matrix $A \in \mathbb{Q}^{n \times n}$ is similar to a diagonal matrix over \mathbb{C}." Justify your answer.
4. Let $F=\mathbb{F}_{7}$ be a finite field with 7 elements.
(i) What is the order of the multiplicative group $G L_{2}\left(\mathbb{F}_{7}\right)$ of 2×2 invertible matrices with entries from \mathbb{F}_{7} ?
(ii) What is the order in $G L_{2}\left(\mathbb{F}_{7}\right)$ of the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$?
(iii) What is the order in $G L_{2}\left(\mathbb{F}_{7}\right)$ of the matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$?
(iv) What is the order of the group $S L_{2}\left(\mathbb{F}_{7}\right)$ of matrices in $G L_{2}\left(\mathbb{F}_{7}\right)$ having determinant 1 ?
(10)
5. Let $R=F[t]$ denote a polynomial ring in one variable over a field, let n be a positive integer, and let V be a free R-module of rank n.
True or False: "If W is a proper submodule of V, then W is a free R-module of rank $m<n$." Justify your answer.
(10) 9. Let F be a field and let $V=F^{4 \times 4}$ be the vector space of 4×4 matrices over F. For $A \in F^{4 \times 4}$, define $T_{A}: V \rightarrow V$ by $T_{A}(B)=A B$ for each $B \in V$.
True or False: "The minimal polynomial of T_{A} is never equal to the characteristic polynomial of T_{A}." Justify your answer.
6. Let F be a field, let m and n be positive integers and let $A \in F^{m \times n}$ be an $m \times n$ matrix.
(i) Define "row space of A ".
(ii) Define "column space of A ".
(iii) Prove that the dimension of the row space of A is equal to the dimension of the column space of A.
(12)
7. Let $\varphi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{3}$ be defined by left multiplication by the matrix $\left[\begin{array}{cc}2 & 6 \\ 4 & 8 \\ 6 & 10\end{array}\right]$ and let $V=\mathbb{Z}^{3} / \varphi\left(\mathbb{Z}^{2}\right)$. Decompose V as a direct sum of cyclic abelian groups.
(12) 12. Assume that $A \in \mathbb{R}^{3 \times 3}$ has eigenvalues $0,2,4$ and that v_{0}, v_{2}, v_{4} are associated eigenvectors.
(i) Determine a basis for the column space of A ?
(ii) Determine all solutions of the system of equations $A X=v_{2}+v_{4}$.
8. Let t be an indeterminate over the field \mathbb{R} and let $\varphi: \mathbb{R}[t]^{3} \rightarrow \mathbb{R}[t]^{3}$ be defined by left multiplication by the matrix $\left[\begin{array}{ccc}t(t-1) & 0 & 0 \\ 2 & t(t-1)^{2} & 0 \\ 0 & 0 & t^{3}(t-1)\end{array}\right]$. Decompose $\mathbb{R}[t]^{3} / \varphi\left(\mathbb{R}[t]^{3}\right)$ as a direct sum of cyclic $\mathbb{R}[t]$-modules.
