Qualifying Examination
Jandary, 1997
Math 554

In answering any part of a question you may assume the preceding parts.
Notation: V is a finite dimensional vector space over a field K;
$\alpha: V \rightarrow V$ is a linear operator.

1. In some basis of V, α is given by the matrix $A=\left[\begin{array}{cccc}1 & 1 & -2 & 0 \\ 2 & 1 & 0 & 2 \\ 1 & 0 & 1 & 1 \\ 0 & -1 & 2 & 1\end{array}\right]$. Find:
(1) the rational normal form of α.
(2) the Jordan normal form of α.
2. Let P be the space of polynomials of degree $<n$ over K, and let $\delta: P \rightarrow P$ be the operator, given by differentiation: $\delta\left(\sum_{i=0}^{n-1} a_{i} x^{i}\right)=\sum_{i=1}^{n-1} i a_{i} x^{i-1}$.

Find the Jordan normal form of the δ^{2}, when
(1) K is the field \mathbb{C} of complex numbers.
(2) K is the field \mathbb{F}_{3} with 3 elements.
3. A α-invariant subspace $W \leq V$ is called irreducible, if the only proper α invariant subspaces of W are 0 and W itself.
(1) Prove that if the characteristic polynomial of α has an irreducible factor of degree d, then α has an irreducible invariant subspace of dimension d.
(2) Prove the converse of (1).
4. Let v_{1}, v_{2} and w_{1}, w_{2} be two pairs of vectors in a real inner product space V.
(1) Prove that if $\left\|v_{1}\right\|=\left\|w_{1}\right\|,\left\|v_{2}\right\|=\left\|w_{2}\right\|$, and $\angle\left(v_{1}, v_{2}\right)=\angle\left(w_{1}, w_{2}\right)$, then there is an orthogonal operator $\alpha: V \rightarrow V$, such that $\alpha\left(v_{1}\right)=w_{1}$ and $\alpha\left(v_{2}\right)=w_{2}$. [10]
(2) Give necessary and sufficient conditions for α in (1) to be unique.
(3) Does the converse of (1) hold?
5. Let B be the subgroup of \mathbb{Z}^{3} generated by $(3,6,3),(-1,4,0)$, and $(5,4,6)$, and let $A=\mathbb{Z}^{3} / B$.
(1) Express A as a direct sum of cyclic groups.
(2) How many distinct subgroups of order 6 does A contain?
6. Let A be a finite abelian group, let n be an integer, and let $\beta: A \rightarrow A$ be the map, defined by $\beta(a)=n a$ for each $a \in A$.
(1) Prove that the abelian groups $\operatorname{Ker}(\beta)$ and $A / \operatorname{Im}(\beta)$ are isomorphic.
(2) Prove that for each prime number p, the number of subgroups of A of order p is equal to the number of subgroups of A of index p.
[Hint: Use the preceding problem with $n=p$.]

