Qualifying Examination

August, 1996
Math 554

In answering any part of a question you may assume the preceding parts.
Notation: K is a field; $M_{n}(K)$ is the set of $n \times n$ matrices with elements from K; V is an n-dimensional vector space over $K ; \alpha$ is a linear operator on V.

1. Prove that if $A, B \in M_{n}(K)$ and one of A, B is invertible, then $\operatorname{det}(a A+B)=0$ for at most n distinct values of $a \in K$.
[8 points]
2. Let A^{T} denote the transpose of $A \in M_{n}(K)$. Prove that there exists an invertible $P \in M_{n}(K)$, such that $P A P^{-1}=A^{T}$.
[8 points]
3. Let π_{1} and π_{2} be linear operators on a vector space V, such that

$$
\pi_{1} \pi_{2}=\pi_{2} \pi_{1} \quad \pi_{1}^{2}=\pi_{1} \quad \pi_{2}^{2}=\pi_{2}
$$

Prove that V is the direct sum of the following four subspaces: [8 points]

$$
\operatorname{Im} \pi_{1} \cap \operatorname{Im} \pi_{2} \quad \operatorname{Im} \pi_{1} \cap \operatorname{Ker} \pi_{2} \quad \text { Ker } \pi_{1} \cap \operatorname{Im} \pi_{2} \quad \operatorname{Ker} \pi_{1} \cap \operatorname{Ker} \pi_{2}
$$

4. Prove that if α has the same matrix in all bases of V, then there exists an $a \in K$ such that $\alpha=a \operatorname{id}_{V}$.
5. Prove that if $\operatorname{rank}(\alpha)=1$, then the minimal polynomial of α has the form $x(x-a)$ for some $a \in K$.
[8 points]
6. Let $K=\mathbb{R}$ and let V be a space with inner product (\mid). If $\alpha \neq 0$ and $(\alpha(v) \mid w)=-(v \mid \alpha(w))$ for all $v, w \in V$, then prove the following:
(1) There exists an invariant subspace W of V, with orthonormal basis e_{1}, e_{2}, such that $\alpha\left(e_{1}\right)=-e_{2}$ and $\alpha\left(e_{2}\right)=e_{1}$. [8 points]
(2) The orthogonal complement W^{\perp} of W is α-invariant. [6 points]
(3) There exists an orthonormal basis of V in which the matrix of α has the form

$$
\left[\begin{array}{ccccc}
A_{1} & 0 & \ldots & 0 & 0 \\
0 & A_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & A_{k} & 0 \\
0 & 0 & \ldots & 0 & O_{n-2 k}
\end{array}\right] \quad \text { where } \quad A_{i}=\left[\begin{array}{cc}
0 & a_{i} \\
-a_{i} & 0
\end{array}\right] \quad \text { with } a_{i} \in K
$$

and $O_{n-2 k}$ is the zero matrix of order $n-2 k$.
7. Let $\beta: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ be a homomorphism of abelian groups, given by left multiplication with the matrix $\left[\begin{array}{ccc}-1 & 3 & 2 \\ 0 & 2 & 4 \\ 2 & -2 & 4\end{array}\right]$.
(1) Explain why $\operatorname{Ker} \beta$ is a free abelian group, and find a basis.
[8 points]
(2) Decompose $\mathbb{Z}^{3} / \operatorname{Im} \beta$ as a direct sum of cyclic groups.
8. Let p be a prime number, and $A=\mathbb{Z} /\left(p^{2}\right) \oplus \mathbb{Z} /\left(p^{2}\right) \oplus \mathbb{Z} /\left(p^{3}\right)$. Compute:
(1) The number of elements of A of order p^{2}.
[8 points]
(2) The number of cyclic subgroups of A of order p^{2}.

