Name:
(16) 1. Let S and T be linear operators on a vector space V.
(i) If V is finite-dimensional and the composite $S \cdot T=I$, the identity operator on V, prove that $T \cdot S=I$.
(ii) Prove or disprove that the assertion in part (i) is still true when V is infinitedimensional.
(16) 2. (i) Let V be a vector space and let U and W be subspaces of V. Prove that the quotient spaces $(U+W) / W$ and $U /(U \cap W)$ are isomorphic.
(ii) Let V be a module over a commutative ring and let U and W be submodules of V. Prove or disprove that the quotient modules $(U+W) / W$ and $U /(U \cap W)$ are isomorphic.
(16) 3. (i) Suppose $A, B \in \mathbb{C}^{3 \times 3}$ have the same characteristic polynomial and the same minimal polynomial. Prove or disprove that A and B are similar.
(ii) Suppose $A, B \in \mathbb{C}^{4 \times 4}$ have the same characteristic polynomial and the same minimal polynomial. Prove or disprove that A and B are similar.
(16) 4. Let $\varphi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a \mathbb{Z}-module homomorphism given by multiplication by $A \in \mathbb{Z}^{n \times n}$.
(i) Prove that the image of φ is of finite index if and only if $\operatorname{det}(A) \neq 0$.
(ii) Assuming the image of φ is of finite index, how does this index relate to $\operatorname{det}(A)$? Justify your answer.
(14) 5. Let V be the $\mathbb{Z}[i]$-module generated by elements v_{1}, v_{2} with relations $(1+i) v_{1}+(2-i) v_{2}=0$ and $3 v_{1}+5 i v_{2}=0$. Write V as a direct sum of cyclic $\mathbb{Z}[i]$-modules.
(16) 6. Let $V=\mathbb{Z}^{2}$ and let L be the submodule of V spanned by the columns of $A=\left[\begin{array}{cc}6 & -2 \\ 2 & 4\end{array}\right]$. Find a basis $\left(\vec{\alpha}_{1}, \vec{\alpha}_{2}\right)$ of V and integers c_{1}, c_{2} so that $c_{1} \vec{\alpha}_{1}, c_{2} \vec{\alpha}_{2}$ is a basis for L.
(16) 7. Let $P \in \mathbb{R}^{5 \times 5}$ be such that $P^{2}=P^{t}$, where P^{t} denotes the transpose of P. Regarding $P \in \mathbb{C}^{5 \times 5}$ what are the possible eigenvalues of P ? Justify your answer.
(18) 8. Let F be a field and let n be a positive integer.
(i) Describe the 3 types of elementary matrices in $F^{n \times n}$.
(ii) If $F=\mathbb{F}_{3}$ is the prime field with 3 elements, list the number of elementary matrices in $F^{4 \times 4}$ of each of the 3 types of part (i).
(iii) How many permutation matrices are there in $F^{4 \times 4}$?
(18) 9. Let V be a finite-dimensional vector space over the field \mathbb{C} of complex numbers.
(i) Explain how the concepts "linear operator on V " and " V is a module over the polynomial ring $\mathbb{C}[t]$ " are equivalent concepts.
(ii) If $\left(v_{1}, \cdots, v_{m}\right)$ are generators for V as a $\mathbb{C}[t]$-module, what does it mean for $A \in \mathbb{C}[t]^{m \times n}$ to be a presentation matrix for V with respect to $\left(v_{1}, \ldots, v_{m}\right)$?
(iii) If $A=\left[\begin{array}{lll}t^{2}(t-1)^{2} & & \\ & t(t-1)(t-2)^{2} & \\ & & t(t-2)^{3}\end{array}\right]$ is a presentation matrix for V with respect to $\left(v_{1}, v_{2}, v_{3}\right)$, what is the Jordan form of the associated linear operator?
(10) 10. Let $V=\mathbb{C}^{3}$ and let $T: V \rightarrow V$ be a linear operator associated to the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$.
(i) Is the corresponding $\mathbb{C}[t]$-module cyclic? Explain.
(ii) How many 2-dimensional T-invariant subspaces does T have. Describe them.
(10) 11. Let $V=\mathbb{C}^{3}$ and let $T: V \rightarrow V$ be a linear operator associated to the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 3\end{array}\right]$.
(i) Is the corresponding $\mathbb{C}[t]$-module cyclic? Explain.
(ii) How many 2-dimensional T-invariant subspaces does T have? Describe them.
(8) 12. Describe a linear operator $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ for which there exist infinitely many T-invariant subspaces of dimension 2 , but no T-invariant subspaces of dimension 3.
(10) 13. Let $V=\mathbb{Z} / 27 \mathbb{Z} \oplus \mathbb{Z} / 9 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$.
(i) How many cyclic subgroups with 9 elements does V have?
(ii) How many noncyclic subgroups with 9 elements does V have?
(16) 14. Assume that $A \in \mathbb{C}^{5 \times 5}$ is such that $\operatorname{trace}\left(A^{i}\right)=0, i=1,2,3,4,5$. Prove or disprove that A must be nilpotent.

