Name: _

(10) 1. Let V be an abelian group and assume that (v_1, \ldots, v_m) are generators of V. Describe a process for obtaining an $m \times n$ matrix $A \in \mathbb{Z}^{m \times n}$ such that if $\phi : \mathbb{Z}^n \to \mathbb{Z}^m$ is the Z-module homomorphism defined by left multiplication by A, then $V \cong \mathbb{Z}^m / \phi(\mathbb{Z}^n)$. Such a matrix A is called a presentation matrix of V.

(15) 2. Consider the abelian group V = Z/(5³) ⊕ Z/(5²) ⊕ Z/(5²).
(1) Write down a presentation matrix for V as a Z-module.

- (2) Let W be the cyclic subgroup of V generated by the image of (10, 2, 1) in Z/(5³) ⊕ Z/(5²) ⊕ Z/(5²) = V. Write down a presentation matrix for W.
- (3) Write down a presentation matrix for the quotient \mathbb{Z} -module V/W.

- (20) 3. Let R be a commutative ring and let V and W denote free R-modules of rank 4 and 5, respectively. Assume that $\phi: V \to W$ is an R-module homomorphism, and that $\mathbf{B} = (v_1, \ldots, v_4)$ is an ordered basis of V and $\mathbf{B}' = (w_1, \ldots, w_5)$ is an ordered basis of W.
 - (1) What is meant by the coordinate vector of $v \in V$ with respect to the basis **B**?
 - (2) Describe how to obtain a matrix $A \in \mathbb{R}^{5 \times 4}$ so that left multiplication by A on \mathbb{R}^4 represents $\phi: V \to W$ with respect to **B** and **B'**.

(3) How does the matrix A change if we change the basis **B** by replacing v_1 by $v_1 + v_2$?

(4) How does the matrix A change if we change the basis \mathbf{B}' by replacing w_1 by $w_1 + w_2$?

- (18) 4. Let A be an 4×5 matrix with coefficients in a commutative ring R and let $\phi: R^5 \to R^4$ be defined by left multiplication by A.
 - (1) Prove or disprove: if ϕ is surjective, then the determinants of the 4×4 minors of A generate the unit ideal of R.

(2) Prove or disprove: if ϕ is surjective, then there exists a matrix $B \in \mathbb{R}^{5 \times 4}$ such that AB is the 4×4 identity matrix.

(10) 5. Let $V = \mathbb{Z}^2$ and let L be the submodule of V spanned by the columns of $A = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix}$. Find a basis $(\vec{\alpha}_1, \vec{\alpha}_2)$ of V and integers c_1, c_2 so that $c_1\vec{\alpha}_1, c_2\vec{\alpha}_2$ is a basis for L.

(10) 6. Let K be the \mathbb{Z} -submodule of \mathbb{Z}^3 generated by

$$f_1 = (1, 0, 4),$$
 $f_2 = (1, -2, 2),$ $f_3 = (2, 2, -4).$

Prove or disprove that there exists an integer n and a \mathbb{Z} -module homomorphism $\phi: \mathbb{Z}^3 \to \mathbb{Z}^n$ such that ker $\phi = K$.

(16) 7. Let F be a field and let R = F[t] be a polynomial ring in one variable over F. Let r and s and $a_1 \ge a_2 \ge \cdots \ge a_r$ and $b_1 \ge b_2 \ge \cdots \ge b_s$ be positive integers. Suppose

$$V = R/(t^{a_1}) \oplus R/(t^{a_2}) \oplus \cdots \oplus R/(t^{a_r})$$

and

$$W = R/(t^{b_1}) \oplus R/(t^{b_2}) \oplus \cdots \oplus R/(t^{b_s}).$$

If the *R*-modules *V* and *W* are isomorphic, prove the structure theorem that asserts that r = s, and that $a_i = b_i$ for i = 1, ..., r.

(14) 8. Over the ring Z[i] of Gaussian integers, let V be the Z[i]-module generated by the two elements v₁, v₂ with relations (1 + i)v₁ + 2v₂ = 0 and 4v₁ + (1 + i)v₂ = 0. Write V as a direct sum of cyclic Z[i]-modules.

(8) 9. Determine the number of isomorphism classes of abelian groups of order 200. Justify your answer. (15) 10. Let V be a finite-dimensional vector space and let $T: V \to V$ be a linear operator. (1) If $\operatorname{rank}(T) = \operatorname{rank}(T^2)$, prove that $\operatorname{im}(T) \cap \ker(T) = 0$.

(2) If $\dim(V) = n$, prove that $\operatorname{rank}(T^n) = \operatorname{rank}(T^{n+1})$.

(3) If $\dim(V) = n$, prove that $V = \operatorname{im}(T^n) \oplus \ker(T^n)$.

- (18) 11. Let F be a field and let F[t] be a polynomial ring in one variable over F. Let $p(t) = t^n + a_{n-1} + \cdots + a_1 t + a_0 \in F[t]$ be a monic polynomial.
 - (1) Write down a matrix $A \in F^{n \times n}$ having characteristic polynomial p(t).

(2) Prove the Cayley-Hamilton Theorem that if $p(t) \in F[t]$ is the characteristic polynomial of a matrix $B \in F^{n \times n}$, then p(B) = 0.

(8) 12. Let R be a commutative ring, let V be an R-module, and let W be a submodule of V. If W and V/W are finitely generated R-modules, prove that V is a finitely generated R-module.

(8) 13. Let \mathbb{F}_7 denote the prime field with 7 elements. What is the order of the group $\operatorname{GF}_3(\mathbb{F}_7)$ of 3×3 invertible matrices with entries in \mathbb{F}_7 ? Justify your answer.

- (18) 14. Let T be a linear operator on \mathbb{C}^2 defined by the matrix $\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ with respect to some basis of \mathbb{C}^2 . Let V denote the module over the polynomial ring $\mathbb{C}[t] = R$ associated to T. Recall that an R-module is said to be *indecomposable* if it is not the direct sum of two nonzero submodules.
 - (1) Prove or disprove that V is an indecomposable R-module.

(2) Prove or disprove that V is a cyclic R-module.

(12) 15. Let $P \in \mathbb{R}^{5 \times 5}$ be such that $P^2 = P^T$, where P^T denotes the transpose of P. Regarding $P \in \mathbb{C}^{5 \times 5}$ what are the possible eigenvalues of P? Justify your answer.