Name: \qquad
(10) 1. Let V be an abelian group and assume that $\left(v_{1}, \ldots, v_{m}\right)$ are generators of V. Describe a process for obtaining an $m \times n$ matrix $A \in \mathbb{Z}^{m \times n}$ such that if $\phi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ is the \mathbb{Z}-module homomorphism defined by left multiplication by A, then $V \cong \mathbb{Z}^{m} / \phi\left(\mathbb{Z}^{n}\right)$. Such a matrix A is called a presentation matrix of V.
(15) 2. Consider the abelian group $V=\mathbb{Z} /\left(5^{3}\right) \oplus \mathbb{Z} /\left(5^{2}\right) \oplus \mathbb{Z} /\left(5^{2}\right)$.
(1) Write down a presentation matrix for V as a \mathbb{Z}-module.
(2) Let W be the cyclic subgroup of V generated by the image of $(10,2,1)$ in $\mathbb{Z} /\left(5^{3}\right) \oplus \mathbb{Z} /\left(5^{2}\right) \oplus \mathbb{Z} /\left(5^{2}\right)=V$. Write down a presentation matrix for W.
(3) Write down a presentation matrix for the quotient \mathbb{Z}-module V / W.
(20) 3. Let R be a commutative ring and let V and W denote free R-modules of rank 4 and 5 , respectively. Assume that $\phi: V \rightarrow W$ is an R-module homomorphism, and that $\mathbf{B}=\left(v_{1}, \ldots, v_{4}\right)$ is an ordered basis of V and $\mathbf{B}^{\prime}=\left(w_{1}, \ldots, w_{5}\right)$ is an ordered basis of W.
(1) What is meant by the coordinate vector of $v \in V$ with respect to the basis \mathbf{B} ?
(2) Describe how to obtain a matrix $A \in R^{5 \times 4}$ so that left multiplication by A on R^{4} represents $\phi: V \rightarrow W$ with respect to \mathbf{B} and \mathbf{B}^{\prime}.
(3) How does the matrix A change if we change the basis \mathbf{B} by replacing v_{1} by $v_{1}+v_{2}$?
(4) How does the matrix A change if we change the basis \mathbf{B}^{\prime} by replacing w_{1} by $w_{1}+w_{2}$?
(18) 4. Let A be an 4×5 matrix with coefficients in a commutative ring R and let $\phi: R^{5} \rightarrow R^{4}$ be defined by left multipliation by A.
(1) Prove or disprove: if ϕ is surjective, then the determinants of the 4×4 minors of A generate the unit ideal of R.
(2) Prove or disprove: if ϕ is surjective, then there exists a matrix $B \in R^{5 \times 4}$ such that $A B$ is the 4×4 identity matrix.
(10) 5. Let $V=\mathbb{Z}^{2}$ and let L be the submodule of V spanned by the columns of $A=\left[\begin{array}{ll}6 & 4 \\ 4 & 6\end{array}\right]$. Find a basis $\left(\vec{\alpha}_{1}, \vec{\alpha}_{2}\right)$ of V and integers c_{1}, c_{2} so that $c_{1} \vec{\alpha}_{1}, c_{2} \vec{\alpha}_{2}$ is a basis for L.
(10) $\quad 6$. Let K be the \mathbb{Z}-submodule of \mathbb{Z}^{3} generated by

$$
f_{1}=(1,0,4), \quad f_{2}=(1,-2,2), \quad f_{3}=(2,2,-4)
$$

Prove or disprove that there exists an integer n and a \mathbb{Z}-module homomorphism $\phi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{n}$ such that $\operatorname{ker} \phi=K$.
(16) 7. Let F be a field and let $R=F[t]$ be a polynomial ring in one variable over F. Let r and s and $a_{1} \geq a_{2} \geq \cdots \geq a_{r}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{s}$ be positive integers. Suppose

$$
V=R /\left(t^{a_{1}}\right) \oplus R /\left(t^{a_{2}}\right) \oplus \cdots \oplus R /\left(t^{a_{r}}\right)
$$

and

$$
W=R /\left(t^{b_{1}}\right) \oplus R /\left(t^{b_{2}}\right) \oplus \cdots \oplus R /\left(t^{b_{s}}\right)
$$

If the R-modules V and W are isomorphic, prove the structure theorem that asserts that $r=s$, and that $a_{i}=b_{i}$ for $i=1, \ldots, r$.
(14) 8. Over the ring $\mathbb{Z}[i]$ of Gaussian integers, let V be the $\mathbb{Z}[i]$-module generated by the two elements v_{1}, v_{2} with relations $(1+i) v_{1}+2 v_{2}=0$ and $4 v_{1}+(1+i) v_{2}=0$. Write V as a direct sum of cyclic $\mathbb{Z}[i]$-modules.
(8) 9. Determine the number of isomorphism classes of abelian groups of order 200. Justify your answer.
(15) 10. Let V be a finite-dimensional vector space and let $T: V \rightarrow V$ be a linear operator.
(1) If $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$, prove that $\operatorname{im}(T) \cap \operatorname{ker}(T)=0$.
(2) If $\operatorname{dim}(V)=n$, prove that $\operatorname{rank}\left(T^{n}\right)=\operatorname{rank}\left(T^{n+1}\right)$.
(3) If $\operatorname{dim}(V)=n$, prove that $V=\operatorname{im}\left(T^{n}\right) \oplus \operatorname{ker}\left(T^{n}\right)$.
(18) 11. Let F be a field and let $F[t]$ be a polynomial ring in one variable over F. Let $p(t)=t^{n}+a_{n-1}+\cdots+a_{1} t+a_{0} \in F[t]$ be a monic polynomial.
(1) Write down a matrix $A \in F^{n \times n}$ having characteristic polynomial $p(t)$.
(2) Prove the Cayley-Hamilton Theorem that if $p(t) \in F[t]$ is the characteristic polynomial of a matrix $B \in F^{n \times n}$, then $p(B)=0$.
(8) 12. Let R be a commutative ring, let V be an R-module, and let W be a submodule of V. If W and V / W are finitely generated R-modules, prove that V is a finitely generated R-module.
(8) 13. Let \mathbb{F}_{7} denote the prime field with 7 elements. What is the order of the group $\mathrm{GF}_{3}\left(\mathbb{F}_{7}\right)$ of 3×3 invertible matrices with entries in \mathbb{F}_{7} ? Justify your answer.
(18) 14. Let T be a linear operator on \mathbb{C}^{2} defined by the matrix $\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$ with respect to some basis of \mathbb{C}^{2}. Let V denote the module over the polynomial ring $\mathbb{C}[t]=R$ associated to T. Recall that an R-module is said to be indecomposable if it is not the direct sum of two nonzero submodules.
(1) Prove or disprove that V is an indecomposable R-module.
(2) Prove or disprove that V is a cyclic R-module.
(12) 15. Let $P \in \mathbb{R}^{5 \times 5}$ be such that $P^{2}=P^{T}$, where P^{T} denotes the transpose of P. Regarding $P \in \mathbb{C}^{5 \times 5}$ what are the possible eigenvalues of P ? Justify your answer.

