Name: \qquad
(18) 1. Let V be an n-dimensional vector space over an algebraically closed field F and let \mathcal{F} be a commuting family of linear operators on V. Prove that there exists an ordered basis \mathcal{B} for V such that every operator in \mathcal{F} is represented by an upper triangular matrix with respect to \mathcal{B}.

Notation. For R a commutative ring and m and n positive integers, $R^{m \times n}$ denotes the set of $m \times n$ matrices over R.
(20) 2. Let A and B be $n \times n$ matrices over the field \mathbb{Q} of rational numbers.
(i) Define " A and B are similar over \mathbb{Q} ".
(ii) True or False: "if A and B are similar over the field \mathbb{C} of complex numbers, then A and B are also similar over $\mathbb{Q} "$. Justify your answer.
(iii) Let M and N be $n \times n$ matrices over the polynomial ring $\mathbb{Q}[t]$. Define " M and N are equivalent over $\mathbb{Q}[t]$ ".
(iv) True or False: "Every matrix $M \in \mathbb{Q}[t]^{n \times n}$ is equivalent to a diagonal matrix". Justify your answer.
2. (continued)
(v) True or False: "Every matrix $A \in \mathbb{Q}^{n \times n}$ is similar to a diagonal matrix over $\mathbb{C} "$. Justify your answer.
(vi) Let $I \in \mathbb{Q}[t]^{n \times n}$ be the identity matrix. True or False: "if A and B are similar over \mathbb{Q}, then $t I-A$ and $t I-B$ are equivalent over $\mathbb{Q}[t]$ ". Justify your answer.
(vii) True or False:"if $t I-A$ and $t I-B$ are equivalent over $\mathbb{Q}[t]$, then A and B are similar over $\mathbb{Q} "$. Justify your answer.
(18) 3 . Let \mathbb{Z} denote the ring of integers. Sketch a proof that if M is a \mathbb{Z}-submodule of the free \mathbb{Z}-module \mathbb{Z}^{n}, then M is a free \mathbb{Z}-module.
(15) 4. Let V be a finite-dimensional vector space over an algebraically closed field F and let $T: V \rightarrow V$ be a linear operator. True or False: "if $T=D+N$ where D is diagonalizable and N is nilpotent, then $D \circ N=N \circ D$ ". Justify your answer.
(15) 5. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear operator "left multiplication by $\left[\begin{array}{lll}2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ ". True or False: "if W is a T-invariant subspace of \mathbb{R}^{3}, then there exists a T-invariant subspace W^{1} of \mathbb{R}^{3} such that $W \oplus W^{1}=\mathbb{R}^{3}$." Justify your answer.
(16) 6. Let $F=\mathbb{F}_{7}$ be a finite field with 7 elements.
(i) What is the order of the multiplicative group $G L_{2}\left(\mathbb{F}_{7}\right)$ of 2×2 invertible matrices with entries from \mathbb{F}_{7} ?
(ii) What is the order in $G L_{2}\left(\mathbb{F}_{7}\right)$ of the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$?
(iii) What is the order in $G L_{2}\left(\mathbb{F}_{7}\right)$ of the matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$?
(iv) What is the order of the group $S L_{2}\left(\mathbb{F}_{7}\right)$ of matrices in $G L_{2}\left(\mathbb{F}_{7}\right)$ having determinant 1 ?
(15) 7. Let F be a field and let $V=F^{4 \times 4}$ be the vector space of 4×4 matrices over F. For $A \in F^{4 \times 4}$, define $T_{A}: V \rightarrow V$ by $T_{A}(B)=A B$ for each $B \in V$.
True or False: "The minimal polynomial of T_{A} is never equal to the characteristic polynomial of T_{A} ". Justify your answer.
(20) 8. Let F be a field, let m and n be positive integers and let $A \in F^{m \times n}$ be an $m \times n$ matrix.
(i) Define "row space of A ".
(ii) Define "column space of A ".
(iii) Sketch a proof that the dimension of the row space of A is equal to the dimension of the column space of A.
(15) 9. Let $\varphi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{3}$ be defined by left multiplication by the matrix $\left[\begin{array}{cc}2 & 6 \\ 4 & 8 \\ 10 & 10\end{array}\right]$ and let $V=\mathbb{Z}^{3} / \varphi\left(\mathbb{Z}^{2}\right)$. Decompose V as a direct sum of cyclic abelian groups.
(15) 10. Assume that $A \in \mathbb{R}^{3 \times 3}$ has eigenvalues $0,2,4$ and that v_{0}, v_{2}, v_{4} are associated eigenvectors.
(i) Give a basis for the column space of A.
(ii) Describe all solutions of the system of equations $A X=v_{2}+v_{4}$.
(15) 11. Let t be an indeterminate over the field \mathbb{R} and let $\varphi: \mathbb{R}[t]^{3} \rightarrow \mathbb{R}[t]^{3}$ be defined by left multiplication by the matrix $\left[\begin{array}{ccc}t-1 & 0 & 0 \\ 2 & t-1 & 0 \\ 3 & 0 & t-1\end{array}\right]$. Decompose $\mathbb{R}[t]^{3} / \varphi\left(\mathbb{R}[t]^{3}\right)$ as a direct sum of cyclic $\mathbb{R}[t]$-modules.

