Name: _

(18) 1. Let V be an n-dimensional vector space over an algebraically closed field F and let \mathcal{F} be a commuting family of linear operators on V. Prove that there exists an ordered basis \mathcal{B} for V such that every operator in \mathcal{F} is represented by an upper triangular matrix with respect to \mathcal{B} .

Notation. For R a commutative ring and m and n positive integers, $R^{m \times n}$ denotes the set of $m \times n$ matrices over R.

(20) 2. Let A and B be n×n matrices over the field Q of rational numbers.
(i) Define "A and B are similar over Q".

(ii) True or False: "if A and B are similar over the field \mathbb{C} of complex numbers, then A and B are also similar over \mathbb{Q} ". Justify your answer.

(iii) Let M and N be $n \times n$ matrices over the polynomial ring $\mathbb{Q}[t]$. Define "M and N are equivalent over $\mathbb{Q}[t]$ ".

(iv) True or False: "Every matrix $M \in \mathbb{Q}[t]^{n \times n}$ is equivalent to a diagonal matrix". Justify your answer.

(18) 2. (continued)

(v) True or False: "Every matrix $A \in \mathbb{Q}^{n \times n}$ is similar to a diagonal matrix over \mathbb{C} ". Justify your answer.

(vi) Let $I \in \mathbb{Q}[t]^{n \times n}$ be the identity matrix. True or False: "if A and B are similar over \mathbb{Q} , then tI - A and tI - B are equivalent over $\mathbb{Q}[t]$ ". Justify your answer.

(vii) True or False: "if tI - A and tI - B are equivalent over $\mathbb{Q}[t]$, then A and B are similar over \mathbb{Q} ". Justify your answer.

(18) 3. Let \mathbb{Z} denote the ring of integers. Sketch a proof that if M is a \mathbb{Z} -submodule of the free \mathbb{Z} -module \mathbb{Z}^n , then M is a free \mathbb{Z} -module.

(15) 4. Let V be a finite-dimensional vector space over an algebraically closed field F and let $T: V \to V$ be a linear operator. True or False: "if T = D + N where D is diagonalizable and N is nilpotent, then $D \circ N = N \circ D$ ". Justify your answer.

(15) 5. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator "left multiplication by $\begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ ". True or False: "if W is a T-invariant subspace of \mathbb{R}^3 , then there exists a T-invariant

True or False: "if W is a T-invariant subspace of \mathbb{R}^3 , then there exists a T-invariant subspace W^1 of \mathbb{R}^3 such that $W \oplus W^1 = \mathbb{R}^3$." Justify your answer.

- (16) 6. Let $F = \mathbb{F}_7$ be a finite field with 7 elements.
 - (i) What is the order of the multiplicative group $GL_2(\mathbb{F}_7)$ of 2×2 invertible matrices with entries from \mathbb{F}_7 ?

(ii) What is the order in
$$GL_2(\mathbb{F}_7)$$
 of the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$?

(iii) What is the order in
$$GL_2(\mathbb{F}_7)$$
 of the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$?

(iv) What is the order of the group $SL_2(\mathbb{F}_7)$ of matrices in $GL_2(\mathbb{F}_7)$ having determinant 1?

(15) 7. Let F be a field and let $V = F^{4 \times 4}$ be the vector space of 4×4 matrices over F. For $A \in F^{4 \times 4}$, define $T_A : V \to V$ by $T_A(B) = AB$ for each $B \in V$. True or False: "The minimal polynomial of T_A is never equal to the characteristic polynomial of T_A ". Justify your answer.

- (20) 8. Let F be a field, let m and n be positive integers and let $A \in F^{m \times n}$ be an $m \times n$ matrix.
 - (i) Define "row space of A".

(ii) Define "column space of A".

(iii) Sketch a proof that the dimension of the row space of A is equal to the dimension of the column space of A.

(15) 9. Let $\varphi : \mathbb{Z}^2 \to \mathbb{Z}^3$ be defined by left multiplication by the matrix $\begin{bmatrix} 2 & 6 \\ 4 & 8 \\ 10 & 10 \end{bmatrix}$ and let $V = \mathbb{Z}^3/\varphi(\mathbb{Z}^2)$. Decompose V as a direct sum of cyclic abelian groups.

- (15) 10. Assume that $A \in \mathbb{R}^{3\times 3}$ has eigenvalues 0, 2, 4 and that v_0, v_2, v_4 are associated eigenvectors.
 - (i) Give a basis for the column space of A.

(ii) Describe all solutions of the system of equations $AX = v_2 + v_4$.

(15) 11. Let t be an indeterminate over the field \mathbb{R} and let $\varphi : \mathbb{R}[t]^3 \to \mathbb{R}[t]^3$ be defined by left multiplication by the matrix $\begin{bmatrix} t-1 & 0 & 0 \\ 2 & t-1 & 0 \\ 3 & 0 & t-1 \end{bmatrix}$. Decompose $\mathbb{R}[t]^3/\varphi(\mathbb{R}[t]^3)$ as a direct sum of cyclic $\mathbb{R}[t]$ -modules.