Name: ____

Notation. If R is a commutative ring and m and n are positive integers, then $\mathbb{R}^{m \times n}$ denotes the set of $m \times n$ matrices with entries in R.

(20) 1. Let F be an algebraically closed field. If S is a family of commuting matrices in $F^{3\times 3}$, prove that S does not contain 4 linearly independent matrices.

(20) 2. Let F be an algebraically closed field.

True or false? If S is a family of commuting matrices in $F^{4\times 4}$, then S does not contain 5 linearly independent matrices. Justify your answer.

(20) 3. Let F be a field and let n be a positive integer. Suppose that $T: F^n \to F^n$ is a linear operator having n distinct characteristic values and $S: F^n \to F^n$ is a linear operator that commutes with T. Prove that there exists a polynomial $f(t) \in F[t]$ such that S = f(T).

(20) 4. Let $V = \mathbb{Z}^3$ and let L be the submodule of V spanned by the columns of

$$A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 6 \\ 2 & 4 & 4 \end{bmatrix}.$$

(i) Find Q and P in $GL_3(\mathbb{Z})$ so that QAP is diagonal.

(ii) Find a basis $(\vec{\alpha}_1, \vec{\alpha}_2, \vec{\alpha}_3)$ of V and integers c_1, c_2, c_3 so that $(c_1\vec{\alpha}_1, c_2\vec{\alpha}_2, c_3\vec{\alpha}_3)$ is a basis for L.

- (20) 5. Let V be a finite-dimensional vector space over a field F, let $T: V \to V$ be a linear operator, and let $m(t) \in F[t]$ be the minimal polynomial of T. Assume that $m(t) = p_1(t)^{e_1} \cdots p_k(t)^{e_k}$, where the $p_i(t) \in F[t]$ are distinct monic irreducible polynomials, $i = 1, \cdots, k$, and the e_i are positive integers. Let $W_i = \{v \in V : p_i(T)^{e_i}(v) = 0\}$.
 - (i) Describe how to get linear operators $E_i : V \to V$, i = 1, ..., k, such that $E_i(V) = W_i$, $E_i \circ E_i = E_i$, $E_i \circ E_j = 0$ if $i \neq j$, and $E_1 + \cdots + E_k$ is the identity operator on V.

(ii) If W is a T-invariant subspace of V, prove that $W = (W \cap W_1) \oplus \cdots \oplus (W \cap W_k)$.

(20) 6. Let A ∈ C^{3×3} be a diagonal matrix with main diagonal entries c₁, c₂, c₃, where c₁, c₂, c₃ are three distinct complex numbers. Define T_A : C^{3×3} → C^{3×3} by T_A(B) = AB - BA.
(i) What is dim(ker(T_A))?

(ii) What is $\dim(\operatorname{im}(T_A))$?

(iii) What are the eigenvalues of T_A ?

(iv) What is the minimal polynomial of T_A ?

(v) Is T_A diagonalizable? Explain.

(20) 7. Let $A \in \mathbb{C}^{3\times 3} = V$ and let $A' = PAP^{-1}$, where $P \in GL_3(\mathbb{C})$. Define $T_A : V \to V$ by $T_A(B) = AB - BA$ and $T_{A'} : V \to V$ by $T_{A'}(B) = A'B - BA'$. Let $M \in \mathbb{C}^{9\times 9}$ be the matrix representing T_A with respect to the ordered basis $(\vec{\alpha}_1, \ldots, \vec{\alpha}_9)$ of V.

(i) Does M represent $T_{A'}$ with respect to some ordered basis of V? Justify your answer.

(ii) Are the linear operators T_A and $T_{A'}$ similar? Explain.

(20) 8. Let $a_1 \ge a_2 \ge \cdots \ge a_r$ and $b_1 \ge b_2 \ge \cdots \ge b_s$ be positive integers and let

$$V = \mathbb{Z}/(5^{a_1}) \oplus \mathbb{Z}/(5^{a_2}) \oplus \cdots \oplus \mathbb{Z}/(5^{a_r})$$

and

$$W = \mathbb{Z}/(5^{b_1}) \oplus \mathbb{Z}/(5^{b_2}) \oplus \cdots \oplus \mathbb{Z}/(5^{b_s}).$$

If the abelian groups V and W are isomorphic, prove that r = s and that $a_i = b_i, i = 1, ..., r$.

(20) 9. Let V be the Z-module Z/(3) ⊕ Z/(3) ⊕ Z/(9).
(i) How many submodules with 3 elements does V have?

(ii) How many of the submodules W of V with 3 elements have a complementary direct summand, i.e., are such that there exists a submodule W' of V with $V = W \oplus W'$?

(iii) How many cyclic submodules with 9 elements does V have?

(iv) How many noncyclic submodules with 9 elements does V have?

- (20) 10. Let V be a vector space, let $T: V \to V$ be a linear operator, and let k and n be positive integers.
 - (i) If $w \in V$ is such that $T^k(w) \neq 0$ and $T^{k+1}(w) = 0$, must $(w, T(w), \dots, T^k(w))$ be linear independent? Explain.

(ii) Let W be the subspace of V spanned by $(w, T(w), \dots, T^k(w))$ as in part (i). If $v \in V$ is such that $T^n(v) \notin W$ and $T^{n+1}(v) \in W$, must $(w, T(w), \dots, T^k(w), v, T(v), \dots, T^n(v))$ be linearly independent? Explain.