Name: \qquad
Notation. If R is a commutative ring and m and n are positive integers, then $R^{m \times n}$ denotes the set of $m \times n$ matrices with entries in R.
(20) 1. Let F be an algebraically closed field. If \mathcal{S} is a family of commuting matrices in $F^{3 \times 3}$, prove that \mathcal{S} does not contain 4 linearly independent matrices.
(20) 2 . Let F be an algebraically closed field.

True or false? If \mathcal{S} is a family of commuting matrices in $F^{4 \times 4}$, then \mathcal{S} does not contain 5 linearly independent matrices. Justify your answer.
(20) 3. Let F be a field and let n be a positive integer. Suppose that $T: F^{n} \rightarrow F^{n}$ is a linear operator having n distinct characteristic values and $S: F^{n} \rightarrow F^{n}$ is a linear operator that commutes with T. Prove that there exists a polynomial $f(t) \in F[t]$ such that $S=f(T)$.
(20) 4. Let $V=\mathbb{Z}^{3}$ and let L be the submodule of V spanned by the columns of

$$
A=\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 2 & 6 \\
2 & 4 & 4
\end{array}\right]
$$

(i) Find Q and P in $\mathrm{GL}_{3}(\mathbb{Z})$ so that $Q A P$ is diagonal.
(ii) Find a basis $\left(\vec{\alpha}_{1}, \vec{\alpha}_{2}, \vec{\alpha}_{3}\right)$ of V and integers c_{1}, c_{2}, c_{3} so that $\left(c_{1} \vec{\alpha}_{1}, c_{2} \vec{\alpha}_{2}, c_{3} \vec{\alpha}_{3}\right)$ is a basis for L.
(20) 5. Let V be a finite-dimensional vector space over a field F, let $T: V \rightarrow V$ be a linear operator, and let $m(t) \in F[t]$ be the minimal polynomial of T. Assume that $m(t)=p_{1}(t)^{e_{1}} \cdots p_{k}(t)^{e_{k}}$, where the $p_{i}(t) \in F[t]$ are distinct monic irreducible polynomials, $i=1, \cdots, k$, and the e_{i} are positive integers. Let $W_{i}=\{v \in V$: $\left.p_{i}(T)^{e_{i}}(v)=0\right\}$.
(i) Describe how to get linear operators $E_{i}: V \rightarrow V, i=1, \ldots, k$, such that $E_{i}(V)=W_{i}, E_{i} \circ E_{i}=E_{i}, E_{i} \circ E_{j}=0$ if $i \neq j$, and $E_{1}+\cdots+E_{k}$ is the identity operator on V.
(ii) If W is a T-invariant subspace of V, prove that $W=\left(W \cap W_{1}\right) \oplus \cdots \oplus\left(W \cap W_{k}\right)$.
(20) 6. Let $A \in \mathbb{C}^{3 \times 3}$ be a diagonal matrix with main diagonal entries c_{1}, c_{2}, c_{3}, where c_{1}, c_{2}, c_{3} are three distinct complex numbers. Define $T_{A}: \mathbb{C}^{3 \times 3} \rightarrow \mathbb{C}^{3 \times 3}$ by $T_{A}(B)=A B-B A$.
(i) What is $\operatorname{dim}\left(\operatorname{ker}\left(T_{A}\right)\right)$?
(ii) What is $\operatorname{dim}\left(\operatorname{im}\left(T_{A}\right)\right)$?
(iii) What are the eigenvalues of T_{A} ?
(iv) What is the minimal polynomial of T_{A} ?
(v) Is T_{A} diagonalizable? Explain.
(20) 7. Let $A \in \mathbb{C}^{3 \times 3}=V$ and let $A^{\prime}=P A P^{-1}$, where $P \in G L_{3}(\mathbb{C})$. Define $T_{A}: V \rightarrow V$ by $T_{A}(B)=A B-B A$ and $T_{A^{\prime}}: V \rightarrow V$ by $T_{A^{\prime}}(B)=A^{\prime} B-B A^{\prime}$. Let $M \in \mathbb{C}^{9 \times 9}$ be the matrix representing T_{A} with respect to the ordered basis $\left(\vec{\alpha}_{1}, \ldots, \vec{\alpha}_{9}\right)$ of V.
(i) Does M represent $T_{A^{\prime}}$ with respect to some ordered basis of V ? Justify your answer.
(ii) Are the linear operators T_{A} and $T_{A^{\prime}}$ similar? Explain.
(20) 8. Let $a_{1} \geq a_{2} \geq \cdots \geq a_{r}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{s}$ be positive integers and let

$$
V=\mathbb{Z} /\left(5^{a_{1}}\right) \oplus \mathbb{Z} /\left(5^{a_{2}}\right) \oplus \cdots \oplus \mathbb{Z} /\left(5^{a_{r}}\right)
$$

and

$$
W=\mathbb{Z} /\left(5^{b_{1}}\right) \oplus \mathbb{Z} /\left(5^{b_{2}}\right) \oplus \cdots \oplus \mathbb{Z} /\left(5^{b_{s}}\right) .
$$

If the abelian groups V and W are isomorphic, prove that $r=s$ and that $a_{i}=b_{i}, i=1, \ldots, r$.
(20) 9 . Let V be the \mathbb{Z}-module $\mathbb{Z} /(3) \oplus \mathbb{Z} /(3) \oplus \mathbb{Z} /(9)$.
(i) How many submodules with 3 elements does V have?
(ii) How many of the submodules W of V with 3 elements have a complementary direct summand, i.e., are such that there exists a submodule W^{\prime} of V with $V=W \oplus W^{\prime}$?
(iii) How many cyclic submodules with 9 elements does V have?
(iv) How many noncyclic submodules with 9 elements does V have?
(20) 10. Let V be a vector space, let $T: V \rightarrow V$ be a linear operator, and let k and n be positive integers.
(i) If $w \in V$ is such that $T^{k}(w) \neq 0$ and $T^{k+1}(w)=0$, must $\left(w, T(w), \cdots, T^{k}(w)\right)$ be linear independent? Explain.
(ii) Let W be the subspace of V spanned by $\left(w, T(w), \cdots, T^{k}(w)\right)$ as in part (i). If $v \in V$ is such that $T^{n}(v) \notin W$ and $T^{n+1}(v) \in W$, must $\left(w, T(w), \cdots, T^{k}(w), v, T(v), \cdots, T^{n}(v)\right)$ be linearly independent? Explain.

