Math 553
January 2023
1/5/23

Name:
Qualifying Exam
10 am-12 pm

- DO NOT open the exam booklet until you are told to begin. You should write your name and read the instructions.
- Organize your work, in a reasonably neat and coherent way, in the space provided. If you wish for something to not be graded, please strike it out neatly. I will grade only work on the exam paper, unless you clearly indicate your desire for me to grade work on additional pages.
- You may use any results from class, homework, or Dummit and Foote that does not trivialize the problem, but you must cite the result you are using.
- You may use a fact without proof if its verification is straightforward and you explicitly say so.
- You needn't spend your time rewriting definitions or axioms on the exam.
- You may use any textbooks, my class notes, or

Problem		Points	Score
	1	10	
	2	10	
	3	10	
	4	10	
	5	10	
	6	10	
7	10		
8	20		
Total:	90		

- When you have completed your test, hand it to me.

1. (10 points) Show that any group of order 15 is cyclic i.e. is isomorphic to $\mathbb{Z} / 15$.
2. (10 points) Let p be a prime, n be a positive integer, and G be a p-group. Show that a G-action on \mathbb{F}_{p}^{n} by linear transformations (i.e. $g \cdot(c \vec{v}+\vec{w})=c(g \cdot \vec{v})+g \cdot \vec{w}$ for all $\vec{v}, \vec{w} \in \mathbb{F}_{p}^{n}$ and $c \in \mathbb{F}_{p}$) has a nonzero fixed vector (i.e. a nonzero vector with stabilizer equal to G).
3. (10 points) Find (with proof) a finite set of generators for the ideal

$$
x \mathbb{Q}[x, y] \cap y \mathbb{Q}[x, y] .
$$

4. (10 points) Let k be a field. Show that $k[x, y] /\left(y^{2}-x^{3}+x^{2}\right)$ is an integral domain.
5. (10 points) Show that $x^{4}+1 \in \mathbb{Q}[x]$ is irreducible. Hint: Let $y=x-1$.
6. (10 points) Let $\zeta_{8}=e^{2 \pi i / 8} \in \mathbb{C}$. Classify, with proof, all quadratic extensions of \mathbb{Q} contained in $\mathbb{Q}\left(\zeta_{8}\right)$. For each quadratic extension of \mathbb{Q} contained in $\mathbb{Q}\left(\zeta_{8}\right)$, write a generator of this extension over \mathbb{Q} as a polynomial in ζ_{8}.
7. (10 points) Let K / F be the splitting field of an irreducible and separable quintic (degree 5) polynomial $f(x) \in F[x]$. Show that if $K=F(\alpha, \beta)$ for two roots α, β of $f(x)$, then $[K: F]=$ 5,10, or 20. Hint: Partial credit for showing that $5 \mid[K: F]$ and $[K: F] \leq 20$.
8. Let K / F be the splitting field of a separable quintic (degree 5) polynomial $f(x) \in F[x]$. Suppose that $\operatorname{Gal}(K / F) \cong S_{5}$. Let $\alpha, \beta, \gamma, \delta, \varepsilon \in K$ be the distinct roots of $f(x)$.
(a) (10 points) Show that $F(\alpha, \beta)$ and $F(\gamma, \delta)$ are isomorphic fields.
(b) (10 points) Determine (with proof) $\operatorname{Gal}(K / F(\alpha, \beta))$ and $\operatorname{Gal}(K / F(\alpha+\beta, \alpha \beta))$.
