Qualifying Examination
MA 553
January 4, 2022
Time: 2 hours

Your ID:

1	
2	
3	
4	
5	
6	
7	
Total	

MA 553 Qualifying Examination January 4, 2022
Your ID:
1).
(15 pts) a) Let G be a group and $\operatorname{Aut}(G)$ its group of automorphism. Assume $\operatorname{Aut}(G)$ is abelian. Show that G is solvable.
(10 pts) b) Is the converse true? Justify your answer.

Your ID:
2). Let $R=\mathbb{Z}[\sqrt{-5}]$ and let $I=(2,1+\sqrt{-5}), J=(3,2+\sqrt{-5})$, and $K=(3,2-\sqrt{-5})$ be ideals in R.
(10 pts) a) Show that none of these three ideals are principal.
(25 pts) b) Show that $I J=(1-\sqrt{-5}), I K=(1+\sqrt{-5})$, and $I^{2} J K=(6)$.
(5 pts) c) Show that $I^{2}=(2)$.
Thus all these products are principal.

Your ID:
(15 pts) 3). Let α be a root of

$$
f(x)=x^{19}-5 x^{16}+25 x^{12}+35 x^{7}-50 x^{3}+15=0 .
$$

Is $\mathbb{Q}\left(\alpha^{13}\right)=\mathbb{Q}(\alpha)$? Justify your answer.

Your ID:
4).
(10 pts) a) Show that the polynomial $f(x)=x^{3}-3 x+1$ is irreducible over \mathbb{Z} and calculate its discriminant to conclude that it has three (distinct) real roots. What is its Galois group?
(10 pts) b) Show that $x-1$ and $x^{3}-3 x+1$ are relatively prime in $\mathbb{Z}[x]$, i.e., the ideal generated by them is $\mathbb{Z}[x]$.
(10 pts) c) Give a simpler description of the ring

$$
\mathbb{Z}[x] /\left((x-1)\left(x^{3}-3 x+1\right)\right)
$$

Your ID: \qquad
(25 pts) 5). Prove that one of 2,3 or 6 is a square in any field $\mathbb{Z} / p \mathbb{Z}$, where p is a prime. Conclude that the polynomial

$$
x^{6}-11 x^{4}+36 x^{2}-36=\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-6\right)
$$

has a root modulo p for every prime p but has no root in \mathbb{Z}.

Your ID:
6).
(10 pts) a) Define an extension by radicals.
(20 pts) b) Let E be a finite Galois extension of \mathbb{Q} of degree $p q^{m}$, where p and q are prime numbers with $p<q$ and m is a non-negative integer. Prove that every irreducible polynomial over \mathbb{Q} which splits in E is solvable by radicals.
(5 pts) c) Let E / \mathbb{Q} be a Galois extension of degree 4802 . Show that every irreducible polynomial over \mathbb{Q} which splits in E is solvable by radicals.

Your ID:
7).
(10 pts) a) Let ξ_{3} and ξ_{6} be a third and a sixth primitive root of 1 , respectively, such that $\xi_{6}^{2}=\xi_{3}$. Show that $\mathbb{Q}\left(\xi_{3}\right)=\mathbb{Q}\left(\xi_{6}\right)$, and write $\operatorname{Irr}\left(\mathbb{Q}\left(\xi_{3}\right), \xi_{6}\right)$ as a linear equation with coefficients in $\mathbb{Q}\left(\xi_{3}\right)$.
(10 pts) b) Let

$$
f(x)=\left(x^{3}-2\right)\left(x^{2}-x+1\right)
$$

Give a splitting field K of $f(x)$ over \mathbb{Q} and determine its Galois group $\operatorname{Gal}(K / \mathbb{Q})$.
$(10 \mathrm{pts}) \mathrm{c})$ Determine all the subfields L of $K, K \supset L \supset \mathbb{Q}$.

