Qualifying Examination MA 553 January 4, 2022 Time: 2 hours

Your ID: _____

1	
2	
3	
4	
5	
6	
7	
Total	

Your ID: _____

- (15 pts) a) Let G be a group and Aut(G) its group of automorphism. Assume Aut(G) is abelian. Show that G is solvable.
- (10 pts) b) Is the converse true? Justify your answer.

^{1).}

Your ID: _____

- 2). Let $R = \mathbb{Z}[\sqrt{-5}]$ and let $I = (2, 1 + \sqrt{-5}), J = (3, 2 + \sqrt{-5})$, and $K = (3, 2 \sqrt{-5})$ be ideals in R.
- (10 pts) a) Show that none of these three ideals are principal.
- (25 pts) b) Show that $IJ = (1 \sqrt{-5})$, $IK = (1 + \sqrt{-5})$, and $I^2 JK = (6)$.
- (5 pts) c) Show that $I^2 = (2)$.

Thus all these products are principal.

Your ID: _____

(15 pts) 3). Let α be a root of

$$f(x) = x^{19} - 5x^{16} + 25x^{12} + 35x^7 - 50x^3 + 15 = 0.$$

Is $\mathbb{Q}(\alpha^{13}) = \mathbb{Q}(\alpha)$? Justify your answer.

Qualifying Examination

January 4, 2022

Your ID: _____

4).

- (10 pts) a) Show that the polynomial $f(x) = x^3 3x + 1$ is irreducible over \mathbb{Z} and calculate its discriminant to conclude that it has three (distinct) real roots. What is its Galois group?
- (10 pts) b) Show that x 1 and $x^3 3x + 1$ are relatively prime in $\mathbb{Z}[x]$, i.e., the ideal generated by them is $\mathbb{Z}[x]$.
- (10 pts) c) Give a simpler description of the ring

$$\mathbb{Z}[x]/((x-1)(x^3 - 3x + 1)).$$

Your ID: _____

(25 pts) 5). Prove that one of 2, 3 or 6 is a square in any field $\mathbb{Z}/p\mathbb{Z}$, where p is a prime. Conclude that the polynomial

$$x^{6} - 11x^{4} + 36x^{2} - 36 = (x^{2} - 2)(x^{2} - 3)(x^{2} - 6)$$

has a root modulo p for every prime p but has no root in \mathbb{Z} .

Qualifying Examination

January 4, 2022

Your ID: _____

6).

- (10 pts) a) Define an extension by radicals.
- (20 pts) b) Let E be a finite Galois extension of \mathbb{Q} of degree pq^m , where p and q are prime numbers with p < q and m is a non-negative integer. Prove that every irreducible polynomial over \mathbb{Q} which splits in E is solvable by radicals.
- (5 pts) c) Let E/\mathbb{Q} be a Galois extension of degree 4802. Show that every irreducible polynomial over \mathbb{Q} which splits in E is solvable by radicals.

Qualifying Examination

January 4, 2022

Your ID: _____

7).

- (10 pts) a) Let ξ_3 and ξ_6 be a third and a sixth primitive root of 1, respectively, such that $\xi_6^2 = \xi_3$. Show that $\mathbb{Q}(\xi_3) = \mathbb{Q}(\xi_6)$, and write $Irr(\mathbb{Q}(\xi_3), \xi_6)$ as a <u>linear</u> equation with coefficients in $\mathbb{Q}(\xi_3)$.
- (10 pts) b) Let

$$f(x) = (x^3 - 2)(x^2 - x + 1).$$

Give a splitting field K of f(x) over \mathbb{Q} and determine its Galois group $Gal(K/\mathbb{Q})$.

(10 pts) c) Determine all the subfields L of $K, K \supset L \supset \mathbb{Q}$.