QUALIFYING EXAM COVER SHEET

August 2022 Qualifying Exams

Points	/ Max Possible	Grade	
For grader use:			
EXAM (circle one)	530 544 (553	554	
ID #:(10 dig	;it PUID)		
TD //			
Instructions: These e your PUID	xams will be "blind-graded	d" so under the student ID no	umber <u>please</u> <u>use</u>

Qualifying Examination MA 553

August 11, 2022 Time: 2 hours

Instructor: F. Shahidi

PUID: _____

MA 553	Qualifying Examination	August 11, 2022	Inst: F. Shahidi
Your ID:			
1).			

- (10 pts) a) Show that every solvable group has a non-trivial normal abelian subgroup.
- (10 pts) b) Let G be a group and denote by $\operatorname{Aut}(G)$ the group of its automorphisms. Assume $\operatorname{Aut}(G)$ is solvable. Prove that G is solvable.

MA 553	Qualifying Examination	August 11, 2022	Inst: F. Shahidi
Your ID:			
BLANK PAGE			

MA 553	Qualifying Examination

Your ID:

August 11, 2022 Inst: F. Shahidi

2). Let p and q be two prime numbers with p < q. Let G be a group of order pq.

- (10 pts) a) Assume p does not divide q-1. Show that G is cyclic which is in fact a direct product of a q-Sylow (S_q) subgroup Q and a p-Sylow (S_p) subgroup P of G.
- (15 pts) b) Assume p|q-1 and G is not cyclic. Conclude that in this case G is non-abelian and is a semi-direct product of a S_q -subgroup Q and a S_p -subgroup P of G, but not their direct product.
- (15 pts) c) Let p and q be two primes as above with p|q-1. Let P and Q be the (cyclic) groups of orders p and q, respectively. Show that all the semi-direct products $Q \rtimes_{\varphi} P$, where $\varphi: P \to \operatorname{Aut}(Q)$ are non-trivial homomorphisms, are isomorphic. You may assume the fact that finite subgroups of the multiplicative group of a field are cyclic.

MA 553	Qualifying Examination	August 11, 2022	Inst: F. Shahidi
Your ID:			
BLANK PAGE			

MA 553

Qualifying Examination August 11, 2022 Inst: F. Shahidi

Your ID: _____

(20 pts) 3). Let α be a root of

$$f(x) = x^{23} - 5x^{19} + 25x^{11} - 30x^8 + 35x^5 + 10 = 0$$

Is $\mathbb{Q}(\alpha^{10}) = \mathbb{Q}(\alpha)$? Justify your answer.

MA 553	Qualifying Examination	August 11, 2022	Inst: F. Shahid
Your ID:			
BLANK PAGE			

MA 553 Qualifying Examination August 11, 2022 Inst: F. Shahidi
Your ID: _____

4).

- (10 pts) a) Let R be a commutative ring. Let I and J be two ideals in R. Assume P is a prime ideal of R such that $I \cap J \subset P$. Show that either I or J is contained in P.
- (10 pts) b) Show that $f(x,y) = x^2 + xy + y^2 + y$ is irreducible in $\mathbb{Z}[x,y]$.

MA 553	Qualifying Examination	August 11, 2022	Inst: F. Shahidi
Your ID:			
BLANK PAC	ĬĘ.		

MA 553	Qualifying Examination	August 11, 2022	Inst: F. Shahidi
Your ID:			

5).

- (10 pts) a) Show that polynomial $f(x) = x^4 + 1$ is irreducible in $\mathbb{Z}[x]$ using Eisenstein Criterion.
- (20 pts) b) Show that $f(x) = x^4 + 1$ is reducible modulo every prime p. (Hint: For odd p show that $x^8 1$ divides $x^{p^2} x$ whose roots are elements of a field with p^2 elements.)

Thus a polynomial in $\mathbb{Z}[x]$ could be irreducible over \mathbb{Z} , but reducible over every $\mathbb{Z}/p\mathbb{Z}$, p a prime number.

MA 553	Qualifying Examination	August 11, 2022	Inst: F. Shahidi
Your ID:			
BLANK PAGE			

MA 553	Qualifying Examination	August 11, 2022	Inst: F. Shahidi
Your ID:			
6).			

- (5 pts) a) Define the discriminant of a polynomial of degree n over \mathbb{Q} .
- (20 pts) b) Use Galois theory to prove that a cubic polynomial over \mathbb{Q} , not necessarily irreducible, has only real roots iff its discriminant is non-negative.

MA 553	Qualifying Examination	August 11, 2022	Inst: F. Shahidi
Your ID:			
BLANK PAGE	7.		

MA553

Qualifying Examination

August 11, 2022

Inst: F. Shahidi

Your ID: _____

7).

(8 pts) a) Using that $\mathbb{Z}[\sqrt{-1}]$ is a unique factorization domain (UFD) show that

$$x^3 - (1 + \sqrt{-1})$$

is irreducible over $\mathbb{Z}[\sqrt{-1}]$ and $\mathbb{Q}(\sqrt{-1})$.

- (7 pts) b) Show that the polynomial $f(x) := x^6 2x^3 + 2$ is irreducible over $\mathbb Q$ which has $\alpha = \sqrt[3]{1 + \sqrt{-1}}$ and $\beta = \sqrt[3]{1 \sqrt{-1}}$ among its roots. What is $[\mathbb Q(\alpha):\mathbb Q]$?
- (10 pts) c) Determine the irreducible polynomial for a primitive 12th root of unity (12th cyclotomic polynomial).
- (10 pts) d) Let $L = \mathbb{Q}(\alpha, \beta)$. Show that $\sqrt[3]{2} \in L$. Using part c) prove that $\sqrt[3]{2} \notin \mathbb{Q}(\alpha)$. What is $[L : \mathbb{Q}]$?
- (5 pts) e) Show that $K = \mathbb{Q}(\alpha, \sqrt[3]{2}, \sqrt{3})$ is a splitting field for f(x) over \mathbb{Q} .
- (5 pts) f) Show that K/\mathbb{Q} is an extension by radicals. Is it solvable? Justify your answer.

MA 553	Qualifying Examination	August 11, 2022	Inst: F. Shahidi
Your ID:			
BLANK PAG	GE		