Qualifying Examination
MA 553
January 12, 2021
Time: 2 hours
Your ID:

1	
2	
3	
4	
5	
6	
7	
Total	

Your ID:
(15 pts) 1). Show that any group of order 294 is solvable.

Your ID:
2).
(5 pts) a) Give the definition of a euclidean domain.
$(25 \mathrm{pts}) \mathrm{b})$ Let A be the subring of all the complex numbers $a+b \sqrt{-7}$ in which a and b are both integers or both halves of integers. Prove that A is a euclidean domain. Is A a principal ideal domain (PID)? Prove this. Quoting a theorem is not acceptable.

Your ID:
BLANK PAGE

Your ID:
(20 pts) 3). Let α be a root of

$$
f(x)=x^{23}-7 x^{15}+77 x^{10}+35 x^{6}-49 x^{4}+21=0
$$

Is $\mathbb{Q}\left(\alpha^{13}\right)=\mathbb{Q}(\alpha)$? Justify your answer.

Your ID:
(25 pts) 4).
(10 pts) a) Let R be a unique factorization domain and let

$$
f(x, y)=x^{8}+y x^{6}+y x^{4}+7 y x+y \in R[x, y] .
$$

Show that $f(x, y)$ is irreducible in $R[x, y]$.
(15 pts) b) Let $K=F\left(x^{8} / x^{6}+x^{4}+7 x+1\right)$, where F is a field. Determine $[F(x): K]$.

Your ID:
(30 pts) 5). Show that the irreducible polynomial $x^{4}+1 \in \mathbb{Z}[x]$ is reducible modulo every prime p. (Hint: For odd p show that $x^{8}-1$ divides $x^{p^{2}-1}-1$ and thus $x^{p^{2}}-x$ whose roots are elements of $\mathbb{F}_{p^{2}}$, finite field with p^{2} elements.)

Your ID:
6.
$(15 \mathrm{pts}) \quad$ a) Determine the Galois group of $f(x)=x^{3}-3 x+1$.
(15 pts) b) Show that the Galois group of

$$
g(x)=x^{5}-5 x^{3}+x^{2}+6 x-2
$$

is $\mathbb{Z} / 6 \mathbb{Z}$. The Galois groups are over \mathbb{Q}.

Your ID:
BLANK PAGE

Your ID:
7). Let $\alpha=\sqrt[3]{1+\sqrt{3}}$ and $\beta=\sqrt[3]{1-\sqrt{3}}$.
$(10 \mathrm{pts}) \quad$ a) Show that $[\mathbb{Q}(\alpha): \mathbb{Q}]=6$.
$(10 \mathrm{pts}) \quad \mathrm{b})$ Prove that $K=\mathbb{Q}(\alpha, \beta, \sqrt{-1})$ is a normal closure for $\mathbb{Q}(\alpha) / \mathbb{Q}$.
(10 pts) c) Show that $\sqrt[3]{2} \in K$ and express it as a polynomial in α, β and $\sqrt{-1}$.
(10 pts) d) Show that $\sqrt[3]{2} \notin \mathbb{Q}(\sqrt{3}, \sqrt{-1})$, but $\omega \in \mathbb{Q}(\sqrt{3}, \sqrt{-1})$, where ω is a root of $\omega^{2}+$ $\omega+1=0$. Conclude that $[L: \mathbb{Q}]=12$, where $L=\mathbb{Q}(\sqrt[3]{2}, \sqrt{3}, \sqrt{-1})$, and K is obtained by adjoining a cube root of an element in L. Thus $[K: \mathbb{Q}]=12$ or 36 .
$(10 \mathrm{pts})$ e) Show that both K / \mathbb{Q} and L / \mathbb{Q} are extensions by radicals. Is K / \mathbb{Q} solvable? Justify your answer.

Your ID:
BLANK PAGE

Your ID:
BLANK PAGE

