QUALIFYING EXAM COVER SHEET

August 2021 Qualifying Exams

Instructions: These your PUID	exams will be	"blind-	graded'	' so und	er the student I	D numl	oer <u>plea</u>	se <u>use</u>
ID#:(10 di	' DITTO							
(10 di	git PUID)					-		
EXAM (circle one	514	519	523	530	544 (553)	554	562	571
	·							
For grader use:								
Points	/Max Pos	sible_			Grade		-	

Qualifying Examination MA 553 August 10, 2021 Time: 2 hours

Your ID:	
----------	--

. 1	
2	
3	
4	
5	
6	
7	
8	
Total	
8	

MA 553	Qualifying Examination	August 10, 2021
Your ID:		

(15 pts) 1). Let p be a prime number, $p \ge 5$, $p \ne 7$, and let n be a positive integer. Show that every group of order $8p^n$ is solvable.

MA	553	Qualifying Examination	August 10, 2021	
You	r ID	:		
2).	i		i e	
(10 pts)	a)	Define the commutator subgroup $[G, G]$ Prove that $H > [G, G]$ if and only if H] of a group G . Let $H < G$ be a substitute of a group G and G/H is abeliant.	ogroup. n.
(10 pts)	b)	Let G be a group and A and B normal abelian. Show that $A \cap B$ is normal in	nal subgroups of G with G/A and G and $G/A \cap B$ is abelian.	d <i>G/B</i>

Qualifying Examination

August 10, 2021

Your ID:

(30 pts) 3). Show that

$$f(x) = (x-1)\dots(x-n)-1$$

is irreducible over $\mathbb Z$ for all integers $n\geq 1.$

MA 553	Qualifying Examination	August 10, 2021
Your ID:	· .	
BLANK PAGE		

Qualifying Examination

August 10, 2021

Your ID: _

4). Show that the following polynomials are irreducible:

- (10 pts) a) $x^3 + 4$ in $\mathbb{Q}[x]$.
- (10 pts) b) $x^5 + yx^3 + y^2x^2 + y^n + y$ in $\mathbb{Z}[x, y]$, for a positive integer n.

MΑ	553
IVLE	ರಾವ

Qualifying Examination

August 10, 2021

Your ID: _____

5). Let R be the ring

$$R := \mathbb{Z}[x]/(x^3 + x).$$

- (15 pts) a) Show that R can be written as a product of euclidean domains. You must verify that they are euclidean domains.
- (5 pts) b) Is R a euclidean domain itself? Justify your answer.

MA	553
IVL	UU.T

Qualifying Examination

August 10, 2021

Your ID: _____

- 6. Let F be a field of characteristic p > 0. Fix an element c in F.
- (15 pts) a) Prove that $f(x) = x^p c$ is irreducible in F[x] if and only if f has no roots in F.
- (10 pts) b) Assume f(x) is irreducible in F[x]. Let K be a splitting field of f(x) over F. Determine $\operatorname{Aut}(K/F)$, the group of automorphism of K fixing F. Is K/F Galois? Justify your answer.

MA 553	Qualifying Examination	August 10, 2021
Your ID:		
BLANK PAGE		

Qualifying Examination

August 10, 2021

Your ID: _____

7).

(15 pts) a) Show that $\sqrt{5} \not\in \mathbb{Q}(\sqrt[3]{2}, \omega)$, where $\omega^2 + \omega + 1 = 0$.

(15 pts) b) Determine the Galois group of

$$f(x) = x^5 - 5x^3 - 2x^2 + 10$$

over \mathbb{Q} . (You may assume $\mathrm{Gal}(\mathbb{Q}\sqrt[3]{2},\omega)/\mathbb{Q}) \simeq S_3$.)

MA 553	Qualifying Examination	August 10, 2021
Your ID:		
BLANK PAGE		

Qualifying Examination

August 10, 2021

Your ID: _

8).

- (20 pts) a) Show that $f(x) = x^4 2x^2 4$ is irreducible over \mathbb{Q} .
- (8 pts) b) Show that $\alpha = \sqrt{1 + \sqrt{5}}$ is a root of f(x) and let $K = \mathbb{Q}(\alpha)$. Determine a Galois closure L of K over \mathbb{Q} .
- (6 pts) c) Show that $\sqrt{-1} \in L$.
- (6 pts) d) Show that L/\mathbb{Q} is an extension by radicals. Is it solvable? Justify your answer.

MA 553	Qualifying Examination	August 10, 2021
Your ID:		
BLANK PAGE		