Qualifying Examination MA 553 January 2, 2019 Time: 2 hours

Your ID: _____

1	
2	
3	
4	
5	
6	
7	
8	
Total	

Qualifying Examination

Your ID: _____

(15 pts) 1). Show that every group of order $4125 = 3 \cdot 5^3 \cdot 11$ is solvable.

(15 pts) 2). Let α be a root of

$$f(x) = x^{19} - 7x^{16} + 77x^{11} + 63x^5 - 35x^3 + 14 = 0.$$

Is $\mathbb{Q}(\alpha^8) = \mathbb{Q}(\alpha)$? Justify your answer.

(20 pts) 3). Let R be a commutative ring with $1 \neq 0$. Show that the following are equivalent:

Qualifying Examination

a) R has a unique maximal ideal M.

b) The set $R \setminus R^*$ of the non-units is an ideal.

 $\rm MA~553$

Qualifying Examination

January 2, 2019

Your ID: _____

(20 pts) 4). Let R be a commutative ring with $1 \neq 0$ and let P be a prime ideal of R. Let I and J be ideals of R such that $I \cap J \subset P$. Prove that either $I \subseteq P$ or $J \subseteq P$.

5).

(30 pts) a) Let p and q be odd primes with $q \equiv 1(4)$. Let α be a root of $x^4 + p \in \mathbb{F}_q[x]$, where $\mathbb{F}_q := \mathbb{Z}/q\mathbb{Z}$. Assume q is not a square in \mathbb{F}_p . Show that $[\mathbb{F}_q(\alpha) : \mathbb{F}_q] = 4$.

(Hint: Use quadratic reciprocity law $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$, p and q odd primes, where

 $\left(\frac{p}{q}\right) = 1$ or -1 according as the equation $x^2 \equiv p \pmod{q}$ has a solution or not.)

(5 pts) b) Conclude that $\mathbb{F}_q(\alpha) \simeq \mathbb{F}_{q^4}$ and thus a Galois extension of \mathbb{F}_q .

MA 553

Qualifying Examination

January 2, 2019

Your ID: _____

6). Show that the following polynomials are irreducible.

(10 pts) a) $x^3 + 4 \in \mathbb{Q}[x]$.

(10 pts) b) $x^2 + y^n + y$ in $\mathbb{Z}[x, y]$.

7). Find a simpler description for each of the following rings.

(20 pts) a) $\mathbb{Q}[x]/(x^5 + x^3)$.

(20 pts) b) $\mathbb{Z}[x]/(x-2, x^2+3x)$.

8).

- (7 pts) a) Show that $f(x) = x^6 2x^3 10$ is irreducible over \mathbb{Q} .
- (5 pts) b) Let $\alpha = \sqrt[3]{1 + \sqrt{11}}$. Show that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 6$.
- (10 pts) c) Show that $K = \mathbb{Q}(\alpha, \sqrt{-3}, \sqrt[3]{10})$ is a splitting field for f(x).
- (8 pts) d) Show that $\sqrt[3]{10} \notin \mathbb{Q}(\sqrt{-3}, \sqrt{11})$ and conclude that $[L : \mathbb{Q}] = 12$, where $L = \mathbb{Q}(\sqrt{-3}, \sqrt{11}, \sqrt[3]{10})$. Moreover $K = L(\alpha)$ and thus $[K : \mathbb{Q}] = 12$ or 36.
- (5 pts) e) Show that K/\mathbb{Q} is an extension by radicals. Is K/\mathbb{Q} solvable? Justify your answer.

MA 553

Qualifying Examination

January 2, 2019

Your ID: _____