Qualifying Examination
MA 553
January 2, 2019
Time: 2 hours

Your ID:

1	
2	
3	
4	
5	
6	
7	
8	
Total	
2	

Your ID:
(15 pts) 1). Show that every group of order $4125=3 \cdot 5^{3} \cdot 11$ is solvable.

Your ID:
(15 pts) 2). Let α be a root of

$$
f(x)=x^{19}-7 x^{16}+77 x^{11}+63 x^{5}-35 x^{3}+14=0 .
$$

Is $\mathbb{Q}\left(\alpha^{8}\right)=\mathbb{Q}(\alpha)$? Justify your answer.

MA 553 Qualifying Examination January 2, 2019
Your ID:
(20 pts) 3). Let R be a commutative ring with $1 \neq 0$. Show that the following are equivalent:
a) R has a unique maximal ideal M .
b) The set $R \backslash R^{*}$ of the non-units is an ideal.

Your ID:
(20 pts) 4). Let R be a commutative ring with $1 \neq 0$ and let P be a prime ideal of R. Let I and J be ideals of R such that $I \cap J \subset P$. Prove that either $I \subseteq P$ or $J \subseteq P$.

Your ID:
5).
(30 pts) a) Let p and q be odd primes with $q \equiv 1(4)$. Let α be a root of $x^{4}+p \in \mathbb{F}_{q}[x]$, where $\mathbb{F}_{q}:=\mathbb{Z} / q \mathbb{Z}$. Assume q is not a square in \mathbb{F}_{p}. Show that $\left[\mathbb{F}_{q}(\alpha): \mathbb{F}_{q}\right]=4$.
(Hint: Use quadratic reciprocity law $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}, p$ and q odd primes, where
$\left(\frac{p}{q}\right)=1$ or -1 according as the equation $x^{2} \equiv p(\bmod q)$ has a solution or not.)
(5 pts) b) Conclude that $\mathbb{F}_{q}(\alpha) \simeq \mathbb{F}_{q^{4}}$ and thus a Galois extension of \mathbb{F}_{q}.

Your ID:

Your ID:
6). Show that the following polynomials are irreducible.
$(10 \mathrm{pts})$ a) $x^{3}+4 \in \mathbb{Q}[x]$.
$(10 \mathrm{pts}) \mathrm{b}) x^{2}+y^{n}+y$ in $\mathbb{Z}[x, y]$.

Your ID:
7). Find a simpler description for each of the following rings.
(20 pts) a) $\mathbb{Q}[x] /\left(x^{5}+x^{3}\right)$.
(20 pts) b) $\mathbb{Z}[x] /\left(x-2, x^{2}+3 x\right)$.

Your ID:
8).
(7 pts) a) Show that $f(x)=x^{6}-2 x^{3}-10$ is irreducible over \mathbb{Q}.
(5 pts) b) Let $\alpha=\sqrt[3]{1+\sqrt{11}}$. Show that $[\mathbb{Q}(\alpha): \mathbb{Q}]=6$.
(10 pts) c) Show that $K=\mathbb{Q}(\alpha, \sqrt{-3}, \sqrt[3]{10})$ is a splitting field for $f(x)$.
(8 pts) d) Show that $\sqrt[3]{10} \notin \mathbb{Q}(\sqrt{-3}, \sqrt{11})$ and conclude that $[L: \mathbb{Q}]=12$, where $L=$ $\mathbb{Q}(\sqrt{-3}, \sqrt{11}, \sqrt[3]{10})$. Moreover $K=L(\alpha)$ and thus $[K: \mathbb{Q}]=12$ or 36 .
(5 pts) e) Show that K / \mathbb{Q} is an extension by radicals. Is K / \mathbb{Q} solvable? Justify your answer.

Your ID:

