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In answering any part of a question, you may assume the results in previous parts,
even if you have not solved them. Be sure to provide all details of your work.
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(25 pts) 1). Show that the alternating subgroup A;; of Si; cannot have a subgroup of order
2,851,200 = 27 - 3* . 5% . 11.

(Hint: Aq; is simple. You need not prove this.)
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(10 pts) 2). Show that any group of order 294 is solvable.
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3).

(10 pts) a) Let R be a non-zero commutative ring with 1. Show that if I is an ideal of R such
that 14 a is a unit in R for all a € I, then I is contained in every maximal ideal of R.

(20 pts) b) Let m C R be a unique maximal ideal. Then a € m if and only if 1 + ca is a unit.
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4). Let ¢ : R — S be a surjective homomorphism of commutative rings with 1 # 0 and
assume that R contains a unique maximal ideal.

(10 pts) a) Show that S contains a unique maximal ideal.
(10 pts) b) ¢(1g) = 1s.

(10 pts) c¢) Show that an element is a unit in S if and only if it is the image of a certain unit
in R.

(10 pts) d) Show that (b) is not true if ¢ : R — S is not surjective.
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5). Show that
(10 pts) a) (22 + y?) is irreducible in R[z, y].

(10 pts) b) R[z,y]/(z? + »?) is an integral domain.
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6). Determine the Galois groups of the following polynomials:

(10 pts) a) f(z) = 23 — 22 + 4.
(10 pts) b) g(z) = 2% — 3z + 1.

(10 pts) c) h(z) = f(z)g(x).
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7). Let a=+v/1++v3and B=+v1-+3

(5 pts) a) Show that [Q(a): Q] = 6

(10 pts) b) Prove that K = Q(c, 3,v/—1) is a normal closure of Q(c)/Q.
(10 pts) c) Show that /2 € K.

(10 pts) d) Show that v/2 ¢ Q(v/3,v/—1), but w € Q(+v/3,+v/—1), where w is a root of w?4w+1 =
0. Conclude that [L : Q] = 12, where L = Q(3/2,v/3,v/—1). Thus [K : Q] = 12 or 36.

(10 pts) e) Show that both K/Q and L/Q are extensions by radicals. Is K /Q solvable? Justify
your answer.



