Qualifying Examination

MA 553
August 8, 2019
Time: 2 hours
Your ID:

1	
2	
3	
4	
5	
6	
7	
Total	

In answering any part of a question, you may assume the results in previous parts, even if you have not solved them. Be sure to provide all details of your work.

Your ID:
(25 pts) 1). Show that the alternating subgroup A_{11} of S_{11} cannot have a subgroup of order $2,851,200=2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 11$.
(Hint: A_{11} is simple. You need not prove this.)

Your ID:
(10 pts) 2). Show that any group of order 294 is solvable.

Your ID:
3).
(10 pts) a) Let R be a non-zero commutative ring with 1 . Show that if I is an ideal of R such that $1+a$ is a unit in R for all $a \in I$, then I is contained in every maximal ideal of R.
(20 pts) b) Let $m \subset R$ be a unique maximal ideal. Then $a \in m$ if and only if $1+c a$ is a unit.

Your ID: \qquad
4). Let $\phi: R \rightarrow S$ be a surjective homomorphism of commutative rings with $1 \neq 0$ and assume that R contains a unique maximal ideal.
(10 pts) a) Show that S contains a unique maximal ideal.
(10 pts) b) $\phi\left(1_{R}\right)=1_{S}$.
(10 pts) c) Show that an element is a unit in S if and only if it is the image of a certain unit in R.
(10 pts) d) Show that (b) is not true if $\phi: R \rightarrow S$ is not surjective.

Your ID:
5). Show that
(10 pts) a) $\left(x^{2}+y^{2}\right)$ is irreducible in $\mathbb{R}[x, y]$.
$(10 \mathrm{pts})$ b) $\mathbb{R}[x, y] /\left(x^{2}+y^{2}\right)$ is an integral domain.

Your ID:
6). Determine the Galois groups of the following polynomials:
(10 pts) a) $f(x)=x^{3}-2 x+4$.
(10 pts) b) $g(x)=x^{3}-3 x+1$.
$(10 \mathrm{pts})$ c) $h(x)=f(x) g(x)$.

Your ID: \qquad
7). Let $\alpha=\sqrt[3]{1+\sqrt{3}}$ and $\beta=\sqrt[3]{1-\sqrt{3}}$
(5 pts) a) Show that $[\mathbb{Q}(\alpha): \mathbb{Q}]=6$
(10 pts) b) Prove that $K=\mathbb{Q}(\alpha, \beta, \sqrt{-1})$ is a normal closure of $\mathbb{Q}(\alpha) / \mathbb{Q}$.
(10 pts) c) Show that $\sqrt[3]{2} \in K$.
(10 pts) d) Show that $\sqrt[3]{2} \notin \mathbb{Q}(\sqrt{3}, \sqrt{-1})$, but $\omega \in \mathbb{Q}(\sqrt{3}, \sqrt{-1})$, where ω is a root of $\omega^{2}+\omega+1=$ 0 . Conclude that $[L: \mathbb{Q}]=12$, where $L=\mathbb{Q}(\sqrt[3]{2}, \sqrt{3}, \sqrt{-1})$. Thus $[K: \mathbb{Q}]=12$ or 36 .
(10 pts) e) Show that both K / \mathbb{Q} and L / \mathbb{Q} are extensions by radicals. Is K / \mathbb{Q} solvable? Justify your answer.

