
FALL 2018

Qualifying Exam - MA 553

In answering any part of a question, you may assume the results in pre-
vious parts, even if you have not solved them. Be sure to provide all details
of your work.

................................................................................................................

1. Prove that there is no simple group of order 72 ·k which has a subgroup
of index 10. (20 points)

Solution: Suppose G is a simple group. Let P be a subgroup of index 10
in G. Then the acton of a simple group G on G/P by left multiplication
defines the nontrivial action homomorphism φ : G→ S10.

Since group G is simple the normal subgroup ker(φ) is trivial and φ is
an injective homomorphism. Thus G is isomorphic to a subgroup φ(G)
of S10. Consequently |G| = 72 · k divides |S10| = 10! = 7 · s, where 7
does not divide s. This is a contradiction.
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2. Assume that G is a group of order 17 · 15.

(a) Show that G contains a normal cyclic subgroup P of order 17. (10
points)

(b) Show that G/P is cyclic. (10 points)

(c) Show that P ⊂ Z(G) (10 points)

(d) Show that G is abelian. (10 points)

Solution: (a) By the Sylow theorem the number of the Sylow 17-
subgroups n17 satisfies the conditions n17|15, so n17 = 1, 3, 5, 15, and
n17 ≡ 1(mod 17). So n17 = 1 and consequently there is a unique Sylow
17-subgroup P which is normal in G. Moreover P is a subgroup of
order 17. In particular P ' Z17.

(b) Firs note that |G/P | = |G|/|P | = 15 = 3 · 5.

Then for the Sylow subgroups in G/P we have:

n3 = 1, 5, n3 ≡ 1(mod 3). So n3 = 1.

n5 = 1, 3,, n5 ≡ 1(mod 5), and n5 = 1. So there is a unique Sylow
normal 3-subgroup P3 ' Z3 and a unique Sylow normal 5-subgroup
P5 ' Z3. Since P3 · P5 = G/P , and P3 ∩ P5 = 1, and both P3, P5 are
normal we conclude that

G/P = P3 × P5 ' Z3 × Z5 ' Z15

is cyclic.

(c) Since P ' Z17, its automorphism group

Aut(P ) ' Aut(Z17) ' Z∗
17 ' Z16.

Since P is normal G acts on P by conjugation defining the automor-
phisms of P . This determines the action homomorphism

φ : G→ Aut(P ) ' Z16.

Since P is abelian the action of P on itself by conjugation is trivial. So
φ(P ) = 1, and φ factors through

φ : G/P → Aut(P ) ' Z16.
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Since |G/P | = 15, we have φ(G) = φ(G/P ) divides |G/P | = 15 and
|Aut(P )| = 16, hence it divides gcd(15, 16) = 1, and φ(G) = 1. Thus
the action of G on P by conjugation is trivial, and P ⊂ Z(G).

(d) Since P ⊂ Z(G) there is a natural surjective homomorphsimG/P →
G/Z(G). The group G/Z(G) is the image of the cyclic group G/P so
it is cyclic. Consequently, by a theorem, G is abelian.
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3. (a) Determine the number of the elements of order 2 in the Alternating
group A4. (10 points)

(b) Describe the Sylow 2-subgroups in A4. (10 points)

(c) Describe the Sylow 2-subgroups in A5 and find their number. (10
points)

Solution:

(a) The elements of order 2 in A4 have the cycle type 2-2. There are
exactly 4 · 3 · 2/8 = 3 elements of that form

(b) The Sylow 2-subgroup in A4 contains 4 elements since |A4| = 12 =
3 ·4. The Klein subgroup V4 in A4 consists of all the 3 elements of order
2 of the form 2-2:

(12)(34), (13)(24), (14)(23)

and 1. Thus it is a unique normal subgroup Sylow 2 subgoup in A4.

(c) The group A5 has 60 elements and its Sylow 2-subgroup is of order 4
The group A4 is a subgroup of A5 and contains V4. So V4 is a subgroup
of A5 and since it contains 4 -elements it is a Sylow 2 -subgroup. Since
all Sylow 2 -subgroups are conjugate we conclude that all Sylow 2-
subgroups are isomorphic to V4 ' Z2 × Z2. Moreover each Sylow 2-
subgroup is determined by a unique fixed element in {1, 2, 3, 4, 5}. So
there are 5 Sylow 2- subgroups in A5.
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4. Let R be a non-zero commutative ring with 1. Let I be an ideal of R
such that 1 + a is a unit in R for all a ∈ I.

(a) Show that I is proper. (10 points)

(b) Show that I is contained in every maximal ideal of R. (10 points)

Solution: (a) Suppose I = R. Then −1 ∈ I, and 1 + (−1) = 0 is a
unit, by the assumption, which is impossible.

(b) Suppose I is not contained in a maximal ideal M . Then there is a
noninvertible element a ∈ I which is not in M . So, by maximality of
M we have (a) +M = R, and thus there exists c ∈ R, d ∈M such that
ca + d = 1. But by the assumption d = 1− ca ∈ M is a unit in R. A
contradiction since a proper ideal contains no units.
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5. Prove that

(a) the natural homomorphism Z→ Z[i]/(6 + i), a 7→ a+ (6 + i) is
surjective. (10 points)

(b) Z[i]/(6 + i) ' Z37. (10 points)

Solution: (a) For any a+ bi+ (6 + i) ∈ Z[i]/(6 + i) we have

a+ bi+ (6 + i) = a− 6b+ (6 + i)

as a+ bi− (a− 6b) = b(6 + i). So

φ(a− 6b) = a+ bi+ (6 + i).

(b) ker(φ) = {a ∈ Z | (6 + i)|a}.
If 6 + i|a then N(6 + i)|N(a), so 37|a2, and thus 37|a. Conversely if
37|a then 6 + i|a, as

37 = (6 + i)(6− i),

and a ∈ ker(φ). So ker(φ) = 37Z, and, by the first isomorphism
theorem,

Z[i]/(6 + i) ' Z/37Z = Z17.
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6. Find a simpler description of the ring. Z[x]/(x2− 3, x+ 4). (10 points)

Solution: Consider the surjective homomorphism Z[x] → Z. f(x) 7→
f(−4). Its kernel is given by

ker(φ) = {f ∈ Z[x] | f(−4) = 0}.

Since x+ 4 is monic there is a division with remainder

f(x) = q(x)(x+ 4) + r,

where r is constant. Thus r = f(−4) so f(−4) = 0 implies that
(x+ 4)|f(x) and vice versa, and

ker(φ) = (x+ 4)

Thus the induced homomrphism φ : Z[x]/(x + 4) → Z is an isomor-
phism. Consequently

Z[x]/(x2 − 3, x+ 4) ' Z/(φ(x2 − 3)) = Z/(13) = Z13.
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7. Consider the polynomial f(x) = x4 + 2 over Q.

(a) Express all roots of f(x) in terms of radicals. (10 points)

(b) Show that the degree of the splitting field L = Qf over Q is 8. (10
points)

(c) Determine the Galois group of the splitting field L = Qf over Q.
(10 pts)

(d) Find all the intermediate fields Q ⊂ F ⊂ L such that [F : Q] = 2.
(10 points)

Solution: (a) The roots of x4 + 2 are of the form 4
√

2ε, where ε4 = −1.
In particular ε is an 8-th root of unity so it has a form

ε = εk8 = cos(k · 2π/8) + sin(k · 2π/8),

where k ∈ Z∗
8 and so k = 1, 3, 5, 7. In paricular ε =

√
2/2(±1± i), and

the roots of x4 + 2 are

4
√

2
√

2/2(±1± i) =
4
√

8/2(±1± i)

(b) The sum of the roots

4
√

8/2(1 + i) +
4
√

8/2(1− i) =
4
√

8

is in L. Likewise the elements (1 + i) = 2( 4
√

8/2(1 + i))/ 4
√

8, and
4
√

2 = 2/ 4
√

8 are in L. So Q( 4
√

2, i) ⊆ L. On the other hand the roots
4
√

2
√

2/2(±1± i) generate L and are in Q( 4
√

2, i). So L = Q( 4
√

2, i).

Note that [Q( 4
√

2) : Q] = 4 since 4
√

2 is a root of the polynomial x4 − 2
which is irreducible over Q, by Eisenstein criterion for p = 2. On the
other hand i is a root of x2+1 which has no roots in real field Q( 4

√
2), so

it is irreducible over Q( 4
√

2). So [L : Q( 4
√

2] = [Q( 4
√

2, i) : Q( 4
√

2] = 2,
and

[L : Q] = [L : Q(
4
√

2] · [Q(
4
√

2] : Q] = 2 · 4 = 8

(c) The polynomial f(x) = x4 + 2 is irreducible, by Eisenstein criterion
for p = 2. By (b) its Galois group has order 8. Then, by the classifica-
tion of the Galois groups of irreducible polynomials, we conclude that
Gal(L/K) ' D8.
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(d) Write

Gal(L/K) ' D8 = 〈r, s | r4 = s2 = 1, rs = sr3〉.

There are exactly 3 subgroups of index 2 in Gal(L/K) ' D8:

H1 = {1, r, r2, r3}, H2 = {1, r2, s, sr2}, H3 = {1, r2, sr, sr3}.

They correspond, by Galois Theory, to 3 different intermediate fields
F such that Q ⊂ F ⊂ L with [F : Q] = 2, namely:

Q(i), Q(
√

2), Q(
√

2i)
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8. Let K be the splitting field of the polynomial

g(x) = (x4 + x2 + x)(x3 + 1)(x3 + x2 + 1)

over F2.

(a) Describe K and find [K : F2]. (10 points)

(b) Find the Galois group Gal(K/F2) and its generator(s).(10 points).

Solution: (a) We can write g(x) as the product of irreducible
polynomials

g(x) = x(x3 + x+ 1)(x+ 1)(x2 + x+ 1)(x3 + x2 + 1).

All the nonlinear polynomials in the above decomposition are ir-
reducible over F2 since they do not have roots in F2 . So K is
the splitting field of the product of irreducible polynomials of de-
gree 2, and 3. Thus it is of the form K = F26 . Consequently
[K : F2] = 6.

(b) The Galois field

Gal(K/F2) = Gal(F26/F2) ' Z6

is generated by the Frobenius autmorphism σ2: x 7→ x2.
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