Instructions: Give a complete solution to each problem. Be sure to show all your work. You may cite any result except the one you are asked to prove. If a result has a name, you may refer to it by name. Otherwise, be sure to indicate the content of the result. The exam is graded 0-200 points.

1. (20 points) Let G be a group and suppose H is a subgroup such that $x^{2} \in H$ for all $x \in G$. Prove H is a normal subgroup of G.
\qquad
2. (9 points each) Denote by S_{n} the symmetric group on n letters and let A_{n} be the subgroup of even permutations in S_{n}. Recall A_{n} is a simple group if $n \geq 5$. Also, you may take as a fact that if $H \subset S_{n}$ is simple and $|H|>2$, then $H \subset A_{n}$.
(a) Show any homomorphism $\varphi: A_{6} \rightarrow S_{4}$ is trivial.
(b) Show there is no subgroup G of A_{6} with $\left[A_{6}: G\right]=4$.
(c) Suppose G is a group of order 90 with no normal subgroup of order 5 . Show there is a non-trivial homomorphism $\varphi: G \rightarrow S_{6}$.
(d) Show there is no simple group of order 90 .

ID

3. (20 points) Let R be a commutative ring with identity, and suppose G is a finite subgroup of R^{\times}, the group of units. Show that if R is an integral domain, then G is cyclic.
4. (12 points each)Let R be an integral domain. Suppose $I_{1}, I_{2}, \ldots, I_{m}$ are ideals in R.
(a) Suppose $I_{1} \cap I_{2} \cap \cdots \cap I_{m}=0$. Show there is some $1 \leq j \leq m$ with $I_{j}=0$.
(b) Show the conclusion of (a) may be false for an intersection of infinitely many ideals.

ID
5. (20 points) Let F be a field. Prove the polynomial ring $F[x]$ has infinitely many maximal ideals.
6. (15 points each) Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree n and let K / \mathbb{Q} be a splitting field of $f(x)$. Suppose the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q}) \simeq S_{n}$, the symmetric group on n letters.
(a) Prove $f(x)$ is irreducible over \mathbb{Q}.
(b) Let $\alpha \in K$ be a root of $f(x)$. Suppose σ is automorphism of the field $\mathbb{Q}(\alpha)$. Prove $\sigma=1$.

ID
7. (14 points) Prove there is a Galois extension K / \mathbb{Q} with Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q}) \simeq$ $\mathbb{Z} / 7 \mathbb{Z}$.
\qquad
8. (9 points each) Let F be a field with $\mathbb{C} \supset F \supset \mathbb{Q}$, and F / \mathbb{Q} an abelian (Galois) extension. Let $\alpha \in F$, with minimal polynomial $f(x) \in \mathbb{Q}[x]$. Let $\tau: \mathbb{C} \rightarrow \mathbb{C}$ be complex conjugation. Assume $|\alpha|=1$ (\mathbb{C}-absolute value). Recall an algebraic integer is an element of \mathbb{C}, which is a root of a monic polynomial in $\mathbb{Z}[x]$.
(a) Prove $\tau \in \operatorname{Gal}(F / \mathbb{Q})$.
(b) Show $|\beta|=1$ for every root β of $f(x)$.
(c) Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. Show $\left|a_{i}\right| \leq 2^{n}$ for $i=0,1, \ldots, n-1$. (Hint: You may use $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.)
(d) Show F has only finitely many algebraic integers of absolute value 1 .

