ID _____

Instructions: Give a complete solution to each problem. Be sure to show all your work. You may cite any result except the one you are asked to prove. If a result has a name, you may refer to it by name. Otherwise, be sure to indicate the content of the result. The exam is graded 0-200 points.

1. (20 points) Let G be a group and suppose H is a subgroup such that $x^2 \in H$ for all $x \in G$. Prove H is a normal subgroup of G.

- 2. (9 points each) Denote by S_n the symmetric group on n letters and let A_n be the subgroup of even permutations in S_n . Recall A_n is a simple group if $n \ge 5$. Also, you may take as a fact that if $H \subset S_n$ is simple and |H| > 2, then $H \subset A_n$.
 - (a) Show any homomorphism $\varphi: A_6 \to S_4$ is trivial.
 - (b) Show there is no subgroup G of A_6 with $[A_6:G] = 4$.
 - (c) Suppose G is a group of order 90 with no normal subgroup of order 5. Show there is a non-trivial homomorphism $\varphi: G \to S_6$.
 - (d) Show there is no simple group of order 90.

3. (20 points) Let R be a commutative ring with identity, and suppose G is a finite subgroup of R^{\times} , the group of units. Show that if R is an integral domain, then G is cyclic.

- 4. (12 points each)Let R be an integral domain. Suppose I_1, I_2, \ldots, I_m are ideals in R.
 - (a) Suppose $I_1 \cap I_2 \cap \cdots \cap I_m = 0$. Show there is some $1 \le j \le m$ with $I_j = 0$.
 - (b) Show the conclusion of (a) may be false for an intersection of infinitely many ideals.

5. (20 points) Let F be a field . Prove the polynomial ring F[x] has infinitely many maximal ideals.

- 6. (15 points each) Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree n and let K/\mathbb{Q} be a splitting field of f(x). Suppose the Galois group $\operatorname{Gal}(K/\mathbb{Q}) \simeq S_n$, the symmetric group on n letters.
 - (a) Prove f(x) is irreducible over \mathbb{Q} .
 - (b) Let $\alpha \in K$ be a root of f(x). Suppose σ is automorphism of the field $\mathbb{Q}(\alpha)$. Prove $\sigma = 1$.

7. (14 points) Prove there is a Galois extension K/\mathbb{Q} with Galois group $\operatorname{Gal}(K/\mathbb{Q}) \simeq \mathbb{Z}/7\mathbb{Z}$.

- 8. (9 points each) Let F be a field with $\mathbb{C} \supset F \supset \mathbb{Q}$, and F/\mathbb{Q} an abelian (Galois) extension. Let $\alpha \in F$, with minimal polynomial $f(x) \in \mathbb{Q}[x]$. Let $\tau : \mathbb{C} \to \mathbb{C}$ be complex conjugation. Assume $|\alpha| = 1$ (\mathbb{C} -absolute value). Recall an **algebraic** integer is an element of \mathbb{C} , which is a root of a monic polynomial in $\mathbb{Z}[x]$.
 - (a) Prove $\tau \in \operatorname{Gal}(F/\mathbb{Q})$.
 - (b) Show $|\beta| = 1$ for every root β of f(x).
 - (c) Let $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$. Show $|a_i| \le 2^n$ for $i = 0, 1, \dots, n-1$. (Hint: You may use $\sum_{k=0}^n \binom{n}{k} = 2^n$.)
 - (d) Show F has only finitely many algebraic integers of absolute value 1.