QUALIFYING EXAMINATION

August 2016 MA 553

- 1. (14 points) Determine all groups of order 255 up to isomorphism. (Hint: Show that the center is not trivial.)
- **2.** (13 points) Let G be a group of order 375 that has a cyclic 5-Sylow subgroup. Show that G is cyclic.
- **3.** (16 points) We write $\mathbb{Z}[i] \subset \mathbb{C}$ for the ring of Gaussian integers and $\mathbb{Z}[X]$ for the polynomial ring in one variable.
 - (a) Show that there is an isomorphism of rings $\mathbb{Z}[i] \cong \mathbb{Z}[X]/(X^2+1)$.
 - (b) Determine the number of distinct ideals of the ring $\mathbb{Z}[i]$ that contain 3+i.
- **4.** (14 points) Let k be a field, f an irreducible polynomial in k[X], and $k \subset K$ a normal field extension. Consider a factorization $f = f_1 \cdots f_s$, where f_i are irreducible polynomials in K[X]. Show that all f_i have the same degree.
- 5. (17 points) Let K be a field of characteristic zero with algebraic closure \overline{K} , and let α be an element of \overline{K} . Let L be a maximal intermediate field of $K \subset \overline{K}$ not containing α , i.e., a subfield of \overline{K} with $K \subset L$ and $\alpha \notin L$ so that L = L' for every subfield L' of \overline{K} with $L \subset L'$ and $\alpha \notin L'$. Show that the field extension $L \subset \overline{K}$ is Galois and Abelian. (Hint: First show that every finite Galois extension of L in \overline{K} is cyclic.)
- 6. (14 points) Let $k \subset K$ be a finite Galois extension and L an intermediate field, $k \subset L \subset K$, so that [K:k] does not divide [L:k]!. Show that there exists an intermediate field L', $L \subset L' \subset K$, so that $L' \neq K$ and $k \subset L'$ is Galois.
- 7. (12 points) Let p be a prime number and let $K \subset \mathbb{C}$ be the spitting field of $X^p 6$ over \mathbb{Q} .
 - (a) Determine the field K and the degree $[K : \mathbb{Q}]$.
 - (b) Determine all subfields L of K with $[L : \mathbb{Q}] = p 1$.