Instructions:

1. The point value of each exercise occurs adjacent to the problem.
2. No books or notes or calculators are allowed.

Page	Points Possible	Points
2	22	
3	22	
4	18	
5	18	
6	16	
7	20	
8	20	
9	16	
10	14	
11	200	
12	Total	

1. Let G be a finite group of order $p q r$, where $p>q>r$ are prime integers.
(a) (5 pts) If G fails to have a normal subgroup of order p, how many elements does G have of order p ? Justify your answer.
(b) (5 pts) If G fails to have a normal subgroup of order q, justify the assertion that G has at least q^{2} element of order q.
2. (12 pts) Let G be a group with $|G|=2 k$, where k is an odd positive integer. Prove or disprove that G must have a subgroup of order k.
3. Let p be a prime integer, let \mathbb{F}_{p} denote the finite field with p elements, and let $G=G L_{2}\left(\mathbb{F}_{p}\right)$ be the group of 2×2 invertible matrices with entries in \mathbb{F}_{p}.
(a) (5 pts) What is the order of the group G ?
(b) (5 pts) Exhibit a Sylow p-subgroup of G.
(c) (12 pts) How many Sylow p-subgroups does G have? Justify your answer.
4. (18 pts) Prove that the ring $R=\mathbb{Z}[i]$ of Gaussian integers is a Euclidean domain.
5. (18 pts) Let R be a commutative ring with $1 \neq 0$, and consider the polynomial

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in R[x]
$$

Assume there exists a nonzero polynomial $q(x)=b_{m} x^{m}+\cdots+b_{0} \in R[x]$ such that $q(x) p(x)=0$. Prove or disprove that there exists a nonzero element $b \in R$ such that $b p(x)=0$.
6. Let F be a field and let \mathcal{P} be the set of all nonconstant monic polynomials $f=f(x) \in F[x]$. For each $f \in \mathcal{P}$, let x_{f} be an indeterminate. Let R be the polynomial ring over F in the indeterminates $\left\{x_{f}: f \in \mathcal{P}\right\}$. Thus $R=F\left[\left\{x_{f}: f \in \mathcal{P}\right\}\right]$. Let I be the ideal of R generated by the polynomials $f\left(x_{f}\right)$.
(a) (8 pts) Prove that $I \neq R$.
(b) (8 pts) Prove that there exists an extension field K of F such that each nonconstant monic polynomial $f(x) \in F[x]$ has a root in K.
7. Let $f(x) \in \mathbb{Q}[x]$ be a monic polynomial of degree n and let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ be the roots of $f(x)$. Let G be the Galois group of $f(x)$ over \mathbb{Q}.
(a) (10 pts) Prove that $f(x)$ is irreducible in $\mathbb{Q}[x]$ if and only if the action of G on $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is transitive.
(b) (10 pts) If the action of G on $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is doubly transitive, prove or disprove that \mathbb{Q} is the only proper subfield of $\mathbb{Q}\left(\alpha_{1}\right)$.
8. Let p be a prime integer. Recall that a field extension K / F is called a p-extension if K / F is Galois and [$K: F]$ is a power of p.
(a) (10 pts) If K / F and L / K are p-extensions, prove that the Galois closure of L / F is a p-extension.
(b) (10 pts) Give an example where K / F and L / K are p-extensions, but L / F is not Galois.
9. (20 pts) Let L / \mathbb{Q} be the splitting field of the polynomial $x^{6}-2 \in \mathbb{Q}[x]$. Diagram the lattice of subfields of L / \mathbb{Q}. For each subfield, give generators and list its degree over \mathbb{Q}. Indicate which of these subfields are Galois over \mathbb{Q}.
10. Let a and b be relatively prime positive integers.
(a) (8 pts) Prove that every integer n has the form $n=a x+b y$, where $x, y \in \mathbb{Z}$ and $0 \leq x<b$.
(b) (8 pts) What is the largest integer n that cannot be written in the form $a x+b y$, where x and y are both nonnegative integers? Justify your answer.
11. (8 pts) Let p be a prime integer, let $Z_{p}=\langle x\rangle$ be a cyclic group of order p and let $G=Z_{p} \times Z_{p}$. Describe the group $\operatorname{Aut}(G)$. In particular, what is $|\operatorname{Aut}(G)|$?
12. (6 pts) Let G be a finite group and let C be the center of G. If G / C is cyclic, does it follow that $C=G$? Justify your answer.
13. A subgroup M of a group G is said to be a maximal subgroup if $M \neq G$ and the only subgroups of G that contain M are M and G.
(a) (7 pts) If the group G is finitely generated and H is a proper subgroup of G, prove that there exists a maximal subgroup M of G such that $H \leq M$.
(b) (7 pts) Assume that G is finitely generated and has a unique maximal subgroup M. Prove or disprove that G is a cyclic group of order p^{n}, where p is a prime number and n is a positive integer.

