Math 553 Qualifying Exam January 6, 2014 W. Heinzer

Instructions:
1. The point value of each exercise occurs adjacent to the problem.

2. No books or notes or calculators are allowed.
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1. Let G be a finite group of order pgr, where p > g > r are prime integers.

(a) (5 pts) If G fails to have a normal subgroup of order p, how many elements does G have of order p?

Justify your answer.

(b) (5 pts) If G fails to have a normal subgroup of order g, justify the assertion that G has at least ¢>

element of order q.

2. (12 pts) Let G be a group with |G| = 2k, where k is an odd positive integer. Prove or disprove that G

must have a subgroup of order k.
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3. Let p be a prime integer , let F,, denote the finite field with p elements, and let G = GL2(F,) be the

group of 2 X 2 invertible matrices with entries in F,,.

(a) (5 pts) What is the order of the group G?

(b) (5 pts) Exhibit a Sylow p-subgroup of G.

(¢) (12 pts) How many Sylow p-subgroups does G have? Justify your answer.
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4. (18 pts) Prove that the ring R = Z[i] of Gaussian integers is a Euclidean domain.
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5. (18 pts) Let R be a commutative ring with 1 # 0, and consider the polynomial
p(z) = apr" +ap_ 12" 4+ Fax+ag € Rz,

Assume there exists a nonzero polynomial ¢(z) = b, 2™ + - - + by € R[x] such that g(z)p(z) = 0. Prove

or disprove that there exists a nonzero element b € R such that bp(z) = 0.
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6. Let F' be a field and let P be the set of all nonconstant monic polynomials f = f(x) € Flz]. For
each f € P, let x4 be an indeterminate. Let R be the polynomial ring over F' in the indeterminates

xr: feP}. Thus R = zr: f € . Let I be the ideal of R generated by the polynomials f(z¢).
g f€P} Thus R= Fl|{zs: f € P}|. Let I be the ideal of R d by the polynomials f(x

(a) (8 pts ) Prove that I # R.

(b) (8 pts ) Prove that there exists an extension field K of F' such that each nonconstant monic poly-

nomial f(z) € Fz] has a root in K.
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7. Let f(z) € Q[z] be a monic polynomial of degree n and let a,...,a, € C be the roots of f(x). Let G

be the Galois group of f(z) over Q.

(a) (10 pts) Prove that f(x) is irreducible in Q[z] if and only if the action of G on {ay,...,a,} is

transitive.

(b) (10 pts) If the action of G on {ay,...,a,} is doubly transitive, prove or disprove that Q is the only
proper subfield of Q(«;).
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8. Let p be a prime integer. Recall that a field extension K/F is called a p-extension if K/F is Galois and

[K : F] is a power of p.

(a) (10 pts) If K/F and L/K are p-extensions, prove that the Galois closure of L/F is a p-extension.

(b) (10 pts) Give an example where K/F and L/K are p-extensions, but L/F is not Galois.
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9. (20 pts) Let L/Q be the splitting field of the polynomial 2° — 2 € Q[z]. Diagram the lattice of subfields
of L/Q. For each subfield, give generators and list its degree over Q. Indicate which of these subfields

are Galois over Q.
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10. Let a and b be relatively prime positive integers.

(a) (8 pts) Prove that every integer n has the form n = ax + by, where 2,y € Z and 0 < z < b.

(b) (8 pts) What is the largest integer n that cannot be written in the form ax + by, where = and y are

both nonnegative integers? Justify your answer.

10
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11. (8 pts) Let p be a prime integer, let Z,, = (x) be a cyclic group of order p and let G = Z, x Z,,. Describe

the group Aut(G). In particular, what is [Aut(G)|?

12. (6 pts) Let G be a finite group and let C' be the center of G. If G/C' is cyclic, does it follow that C = G?

Justify your answer.

11
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13. A subgroup M of a group G is said to be a maximal subgroup if M # G and the only subgroups of G
that contain M are M and G.

(a) (7 pts) If the group G is finitely generated and H is a proper subgroup of G, prove that there exists
a maximal subgroup M of G such that H < M.

(b) (7 pts) Assume that G is finitely generated and has a unique maximal subgroup M. Prove or disprove

that G is a cyclic group of order p™, where p is a prime number and n is a positive integer.

12



