Instructions:

- 1. The point value of each exercise occurs adjacent to the problem.
- 2. No books or notes or calculators are allowed.

Page	Points Possible	Points
2	20	
3	20	
4	18	
5	18	
6	24	
7	18	
8	24	
9	20	
10	18	
11	20	
Total	200	

- **1.** Let G be a finite group and H a subgroup such that |G:H| = d with 1 < d < |G|.
 - (a) (5 pts) Describe the natural homomorphism $\phi: G \to S_d$, where S_d is the permutation group on the left cosets of H in G.

(b) (5 pts) If |G| = n and d is the smallest prime dividing n, prove that H is normal in G.

(c) (5 pts) If |G| = 24 and d = 3, prove that G contains a normal subgroup of order 4 or 8.

(d) (5 pts) If |G| = 24 and d = 3, must H be normal in G? Justify your answer.

- 2. A sequence of subgroups $1 = N_0 \le N_1 \le \dots \le N_{k-1} \le N_k = G$ is called a *composition series* for a group G if N_i is normal in N_{i+1} and N_{i+1}/N_i is a simple group for $0 \le i \le k-1$.
 - (a) (5 pts) State the Jordan-Hölder Theorem for a finite group.

(b) (5 pts) Diagram the lattice of subgroups of the symmetric group S_3 and exhibit all the composition series for S_3 . How many are there?

(c) (5 pts) Diagram the lattice of subgroups of the quaternion group Q_8 and exhibit all the composition series for Q_8 . How many are there?

(d) (5 pts) How many composition series exist for the dihedral group D_8 ? Justify your answer.

3. (8 pts) Let K/F be an algebraic field extension. If $K = F(\alpha)$ for some $\alpha \in K$, prove that there are only finitely many subfields of K that contain F.

4. (10 pts) Let x and y be indeterminates over the field \mathbb{F}_2 . Prove that there exist infinitely many subfields of $L = \mathbb{F}_2(x, y)$ that contain the field $K = \mathbb{F}_2(x^2, y^2)$.

- 5. Let p be a prime integer. Recall that a field extension K/F is called a p-extension if K/F is Galois and [K:F] is a power of p.
 - (a) (10 pts) If K/F and L/K are p-extensions, prove that the Galois closure of L/F is a p-extension.

(b) (8 pts) Give an example where K/F and L/K are *p*-extensions, but L/F is not Galois.

- **6.** Let L/\mathbb{Q} be the splitting field of the polynomial $x^6 2 \in \mathbb{Q}[x]$.
 - (a) (4 pts) What is the degree $[L:\mathbb{Q}]$?
 - (b) (4 pts) If α is one root of $x^6 2$, diagram the lattice of fields between \mathbb{Q} and $\mathbb{Q}(\alpha)$.

(c) (4 pts) Give generators for each subfield K of L for which $[K : \mathbb{Q}] = 2$. How many K are there?

(d) (4 pts) Give generators for each subfield K of L for which $[K : \mathbb{Q}] = 3$. How many K are there?

(e) (4 pts) Give generators for each subfield K of L for which $[K:\mathbb{Q}] = 4$. How many K are there?

(f) (4 pts) How many subfields K of L are such that [L:K] = 2?

7. (9 pts) Prove that an irreducible monic polynomial $f(x) \in \mathbb{Q}[x]$ cannot have a multiple root.

8. (9 pts) Give an example of a field F having characteristic p > 0 and an irreducible monic polynomial $f(x) \in F[x]$ that has a multiple root.

- **9.** Consider the quadratic integer ring $R = \mathbb{Z}[\sqrt{-5}] = \frac{\mathbb{Z}[x]}{(x^2+5)\mathbb{Z}[x]}$.
 - (a) (6 pts) Give generators for each ideal of R that contains (3) and diagram the lattice of ideals of R that contain (3).

(b) (6 pts) Give generators for each ideal of R that contains (7) and diagram the lattice of ideals of R that contain (7).

(c) (6 pts) Including the whole ring R and the ideal (21), how many ideals of R contain the ideal (21)?

(d) (6 pts) Diagram the lattice of ideals of R that contain (21).

10. (10 pts) Let n be a positive integer and d a positive integer that divides n. Suppose $\alpha \in \mathbb{R}$ is a root of the polynomial $x^n - 2 \in \mathbb{Q}[x]$. Prove that there is precisely one subfield F of $\mathbb{Q}(\alpha)$ with $[F : \mathbb{Q}] = d$.

11. (10 pts) Does there exist an example of an infinite abelian group G such that every proper subgroup of G is a finite group? Justify your answer with either a proof or an example.

- **12.** Let *R* be the polynomial ring $\mathbb{Z}[x]$
 - (a) (9 pts) How many maximal ideals of R contain the ideal $I = (15, x^2 + 2)R$? Give generators for each of these maximal ideals.

(b) (9 pts) Diagram the lattice of ideals of R that contain the ideal $I = (15, x^2 + 2)R$, giving generators for each ideal.

- **13.** Let n and p be positive integers with p a prime integer. Let $Z = \langle x \rangle$ be a cyclic group of order $p^n 1$.
 - (a) (7 pts) Describe the group $\operatorname{Aut}(Z)$ of automorphism of Z. In particular, what is $|\operatorname{Aut}(Z)|$?

(b) (7 pts) Let \mathbb{F}_p be the field with p elements and let L/\mathbb{F}_p be a field extension of degree n. Let G be the Galois group of L/\mathbb{F}_p . Describe the group G. In particular, what is |G|?

14. (6 pts) Let G be a finite group and let C be the center of G. If G/C is abelian, does it follow that C = G? Justify your answer.