Instructions:

1. The point value of each exercise occurs adjacent to the problem.
2. No books or notes or calculators are allowed.

Page	Points Possible	Points
2	20	
3	20	
4	18	
5	18	
6	24	
7	18	
8	24	
9	20	
10	200	
11	Total	

1. Let G be a finite group and H a subgroup such that $|G: H|=d$ with $1<d<|G|$.
(a) (5 pts) Describe the natural homomorphism $\phi: G \rightarrow S_{d}$, where S_{d} is the permutation group on the left cosets of H in G.
(b) (5 pts) If $|G|=n$ and d is the smallest prime dividing n, prove that H is normal in G.
(c) (5 pts) If $|G|=24$ and $d=3$, prove that G contains a normal subgroup of order 4 or 8 .
(d) (5 pts) If $|G|=24$ and $d=3$, must H be normal in G ? Justify your answer.
2. A sequence of subgroups $1=N_{0} \leq N_{1} \leq \cdots \leq N_{k-1} \leq N_{k}=G$ is called a composition series for a group G if N_{i} is normal in N_{i+1} and N_{i+1} / N_{i} is a simple group for $0 \leq i \leq k-1$.
(a) (5 pts) State the Jordan-Hölder Theorem for a finite group.
(b) (5 pts) Diagram the lattice of subgroups of the symmetric group S_{3} and exhibit all the composition series for S_{3}. How many are there?
(c) (5 pts$)$ Diagram the lattice of subgroups of the quaternion group Q_{8} and exhibit all the composition series for Q_{8}. How many are there?
(d) (5 pts) How many composition series exist for the dihedral group D_{8} ? Justify your answer.
3. (8 pts) Let K / F be an algebraic field extension. If $K=F(\alpha)$ for some $\alpha \in K$, prove that there are only finitely many subfields of K that contain F.
4. (10 pts) Let x and y be indeterminates over the field \mathbb{F}_{2}. Prove that there exist infinitely many subfields of $L=\mathbb{F}_{2}(x, y)$ that contain the field $K=\mathbb{F}_{2}\left(x^{2}, y^{2}\right)$.
5. Let p be a prime integer. Recall that a field extension K / F is called a p-extension if K / F is Galois and [$K: F]$ is a power of p.
(a) (10 pts) If K / F and L / K are p-extensions, prove that the Galois closure of L / F is a p-extension.
(b) (8 pts) Give an example where K / F and L / K are p-extensions, but L / F is not Galois.
6. Let L / \mathbb{Q} be the splitting field of the polynomial $x^{6}-2 \in \mathbb{Q}[x]$.
(a) (4 pts) What is the degree $[L: \mathbb{Q}]$?
(b) (4 pts) If α is one root of $x^{6}-2$, diagram the lattice of fields between \mathbb{Q} and $\mathbb{Q}(\alpha)$.
(c) (4 pts) Give generators for each subfield K of L for which $[K: \mathbb{Q}]=2$. How many K are there?
(d) (4 pts) Give generators for each subfield K of L for which $[K: \mathbb{Q}]=3$. How many K are there?
(e) (4 pts) Give generators for each subfield K of L for which $[K: \mathbb{Q}]=4$. How many K are there?
(f) $(4 \mathrm{pts})$ How many subfields K of L are such that $[L: K]=2$?
7. (9 pts) Prove that an irreducible monic polynomial $f(x) \in \mathbb{Q}[x]$ cannot have a multiple root.
8. (9 pts) Give an example of a field F having characteristic $p>0$ and an irreducible monic polynomial $f(x) \in F[x]$ that has a multiple root.
9. Consider the quadratic integer ring $R=\mathbb{Z}[\sqrt{-5}]=\frac{\mathbb{Z}[x]}{\left(x^{2}+5\right) \mathbb{Z}[x]}$.
(a) (6 pts) Give generators for each ideal of R that contains (3) and diagram the lattice of ideals of R that contain (3).
(b) (6 pts) Give generators for each ideal of R that contains (7) and diagram the lattice of ideals of R that contain (7).
(c) (6 pts) Including the whole ring R and the ideal (21), how many ideals of R contain the ideal (21)?
(d) (6 pts) Diagram the lattice of ideals of R that contain (21).
10. (10 pts) Let n be a positive integer and d a positive integer that divides n. Suppose $\alpha \in \mathbb{R}$ is a root of the polynomial $x^{n}-2 \in \mathbb{Q}[x]$. Prove that there is precisely one subfield F of $\mathbb{Q}(\alpha)$ with $[F: \mathbb{Q}]=d$.
11. (10 pts) Does there exist an example of an infinite abelian group G such that every proper subgroup of G is a finite group? Justify your answer with either a proof or an example.
12. Let R be the polynomial ring $\mathbb{Z}[x]$
(a) (9 pts) How many maximal ideals of R contain the ideal $I=\left(15, x^{2}+2\right) R$? Give generators for each of these maximal ideals.
(b) (9 pts) Diagram the lattice of ideals of R that contain the ideal $I=\left(15, x^{2}+2\right) R$, giving generators for each ideal.
13. Let n and p be positive integers with p a prime integer. Let $Z=\langle x\rangle$ be a cyclic group of order $p^{n}-1$.
(a) (7 pts) Describe the group $\operatorname{Aut}(Z)$ of automorphism of Z. In particular, what is $|\operatorname{Aut}(Z)|$?
(b) (7 pts) Let \mathbb{F}_{p} be the field with p elements and let L / \mathbb{F}_{p} be a field extension of degree n. Let G be the Galois group of L / \mathbb{F}_{p}. Describe the group G. In particular, what is $|G|$?
14. (6 pts) Let G be a finite group and let C be the center of G. If G / C is abelian, does it follow that $C=G$? Justify your answer.
